Provenance Tracking for End-to-End Machine Learning Pipelines

被引:1
|
作者
Grafberger, Stefan [1 ]
Groth, Paul [2 ]
Schelter, Sebastian [2 ]
机构
[1] Univ Amsterdam, AIRLab, Amsterdam, Netherlands
[2] Univ Amsterdam, Amsterdam, Netherlands
关键词
D O I
10.1145/3543873.3587557
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
引用
收藏
页码:1512 / 1512
页数:1
相关论文
共 50 条
  • [41] Guest Editorial: An End-to-End Machine Learning Perspective on Industrial IoT
    Wouhaybi, Rita
    Balakrishnan, Ravikumar
    Naderializadeh, Navid
    Beirami, Ahmad
    Di Felice, Marco
    Noghabi, Shadi
    Badam, Anirudh
    Xu, Shugong
    IEEE Internet of Things Magazine, 2022, 5 (01): : 22 - 23
  • [42] End-to-End Incremental Learning
    Castro, Francisco M.
    Marin-Jimenez, Manuel J.
    Guil, Nicolas
    Schmid, Cordelia
    Alahari, Karteek
    COMPUTER VISION - ECCV 2018, PT XII, 2018, 11216 : 241 - 257
  • [43] AUV Position Tracking Control Using End-to-End Deep Reinforcement Learning
    Carlucho, Ignacio
    De Paula, Mariano
    Wang, Sen
    Menna, Bruno V.
    Petillot, Yvan R.
    Acosta, Gerardo G.
    OCEANS 2018 MTS/IEEE CHARLESTON, 2018,
  • [44] End-to-end active object tracking football game via reinforcement learning
    Qin, Haobin
    Liu, Ming
    Dong, Liquan
    Kong, Lingqin
    Hui, Mei
    Zhao, Yuejin
    OPTICAL METROLOGY AND INSPECTION FOR INDUSTRIAL APPLICATIONS IX, 2022, 12319
  • [45] Business Provenance - A Technology to Increase Traceability of End-to-End Operations
    Curbera, Francisco
    Doganata, Yurdaer
    Martens, Axel
    Mukhi, Nirmal K.
    Slominski, Aleksander
    ON THE MOVE TO MEANINGFUL INTERNET SYSTEMS: OTM 2008, PART I, 2008, 5331 : 100 - 119
  • [46] End-to-end reproducible AI pipelines in radiology using the cloud
    Bontempi, Dennis
    Nuernberg, Leonard
    Pai, Suraj
    Krishnaswamy, Deepa
    Thiriveedhi, Vamsi
    Hosny, Ahmed
    Mak, Raymond H.
    Farahani, Keyvan
    Kikinis, Ron
    Fedorov, Andrey
    Aerts, Hugo J. W. L.
    NATURE COMMUNICATIONS, 2024, 15 (01)
  • [47] Efficient end-to-end learning for cell segmentation with machine generated weak annotations
    Shrestha, Prem
    Kuang, Nicholas
    Yu, Ji
    COMMUNICATIONS BIOLOGY, 2023, 6 (01)
  • [48] An End-to-end Intelligent Network Resource Allocation in IoV: A Machine Learning Approach
    Muhammad, Afaq
    Khan, Talha Ahmed
    Abbass, Khizar
    Song, Wang-Cheol
    2020 IEEE 92ND VEHICULAR TECHNOLOGY CONFERENCE (VTC2020-FALL), 2020,
  • [49] Explainability and Fairness in Machine Learning: Improve Fair End-to-end Lending for Kiva
    Stevens, Alexander
    Deruyck, Peter
    Van Veldhoven, Ziboud
    Vanthienen, Jan
    2020 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI), 2020, : 1241 - 1248
  • [50] END-TO-END MACHINE LEARNING ON RAW EEG SIGNALS FOR SLEEP STAGE CLASSIFICATION
    Gunnlaugsson, E.
    Ragnarsdottir, H.
    Prainsson, H. M.
    Finnsson, E.
    Jonsson, S. A. E.
    Helgadottir, H.
    Agustsson, J. S.
    Herman, P.
    SLEEP MEDICINE, 2019, 64 : S139 - S139