pyInfinityFlow: optimized imputation and analysis of high-dimensional flow cytometry data for millions of cells

被引:1
|
作者
Ferchen, Kyle [1 ,2 ]
Salomonis, Nathan [3 ,4 ]
Grimes, H. Leighton [2 ,4 ,5 ]
机构
[1] Univ Cincinnati, Canc & Cellular Biol, Cincinnati, OH 45229 USA
[2] Cincinnati Childrens Hosp Med Ctr, Immunobiol, Cincinnati, OH 45229 USA
[3] Cincinnati Childrens Hosp Med Ctr, Biomed Informat, Cincinnati, OH 45229 USA
[4] Univ Cincinnati, Dept Pediat, Cincinnati, OH 45229 USA
[5] Cincinnati Childrens Hosp Med Ctr, Expt Hematol & Canc Biol, Cincinnati, OH 45229 USA
基金
美国国家卫生研究院;
关键词
D O I
10.1093/bioinformatics/btad287
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: While conventional flow cytometry is limited to dozens of markers, new experimental and computational strategies, such as Infinity Flow, allow for the generation and imputation of hundreds of cell surface protein markers in millions of cells. Here, we describe an end-to-end analysis workflow for Infinity Flow data in Python. Results: pyInfinityFlow enables the efficient analysis of millions of cells, without down-sampling, through direct integration with well-established Python packages for single-cell genomics analysis. pyInfinityFlow accurately identifies both common and extremely rare cell populations which are challenging to define from single-cell genomics studies alone. We demonstrate that this workflow can nominate novel markers to design new flow cytometry gating strategies for predicted cell populations. pyInfinityFlow can be extended to diverse cell discovery analyses with flexibility to adapt to diverse Infinity Flow experimental designs.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Ensuring Full Spectrum Flow Cytometry Data Quality for High-Dimensional Data Analysis
    Ferrer-Font, Laura
    Kraker, Geoffrey
    Hally, Kathryn E.
    Price, Kylie M.
    CURRENT PROTOCOLS, 2023, 3 (02):
  • [2] Missing Data Imputation with High-Dimensional Data
    Brini, Alberto
    van den Heuvel, Edwin R.
    AMERICAN STATISTICIAN, 2024, 78 (02): : 240 - 252
  • [3] High-Dimensional Data Analysis Algorithms Yield Comparable Results for Mass Cytometry and Spectral Flow Cytometry Data
    Ferrer-Font, Laura
    Mayer, Johannes U.
    Old, Samuel
    Hermans, Ian F.
    Irish, Jonathan
    Price, Kylie M.
    CYTOMETRY PART A, 2020, 97 (08) : 824 - 831
  • [4] Optimized human immunophenotyping panels enhance the flexibility for high-dimensional flow cytometry analysis with CyTOF
    Tracey, Lauren J.
    Cohen, Michael
    Loh, Christina
    CANCER RESEARCH, 2023, 83 (07)
  • [5] Multipass high-dimensional flow cytometry
    Lugli, Enrico
    Roederer, Mario
    Sottile, Rosa
    NATURE BIOMEDICAL ENGINEERING, 2024, 8 (03) : 209 - 211
  • [6] Multiple imputation and analysis for high-dimensional incomplete proteomics data
    Yin, Xiaoyan
    Levy, Daniel
    Willinger, Christine
    Adourian, Aram
    Larson, Martin G.
    STATISTICS IN MEDICINE, 2016, 35 (08) : 1315 - 1326
  • [7] Multipass high-dimensional flow cytometry
    Enrico Lugli
    Mario Roederer
    Rosa Sottile
    Nature Biomedical Engineering, 2024, 8 : 209 - 211
  • [8] Workflow for high-dimensional flow cytometry analysis of T cells from tumor metastases
    Faccani, Cristina
    Rotta, Gianluca
    Clemente, Francesca
    Fedeli, Maya
    Abbati, Danilo
    Manfredi, Francesco
    Potenza, Alessia
    Anselmo, Achille
    Pedica, Federica
    Fiorentini, Guido
    Villa, Chiara
    Protti, Maria P.
    Doglioni, Claudio
    Aldrighetti, Luca
    Bonini, Chiara
    Casorati, Giulia
    Dellabona, Paolo
    de Lalla, Claudia
    LIFE SCIENCE ALLIANCE, 2022, 5 (10)
  • [9] Multiple imputation in the presence of high-dimensional data
    Zhao, Yize
    Long, Qi
    STATISTICAL METHODS IN MEDICAL RESEARCH, 2016, 25 (05) : 2021 - 2035
  • [10] Multiple imputation with compatibility for high-dimensional data
    Zahid, Faisal Maqbool
    Faisal, Shahla
    Heumann, Christian
    PLOS ONE, 2021, 16 (07):