On the separability of subgroups of nilpotent groups by root classes of groups

被引:3
|
作者
Sokolov, Evgeny Victorovich [1 ]
机构
[1] Ivanovo State Univ, Ivanovo, Russia
基金
俄罗斯科学基金会;
关键词
GENERALIZED FREE-PRODUCTS; CLASS RESIDUALITY; CYCLIC SUBGROUP; FINITENESS;
D O I
10.1515/jgth-2022-0021
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Suppose that e is a class of groups consisting only of periodic groups and beta(e/0 is the set of prime numbers that do not divide the order of any element of a e-group. It is easy to see that if a subgroup Y of a group X is e-separable in this group, then it is beta(e/0-isolated in X. Let us say that X has the property e-Sep if all of its beta(e/0-isolated subgroups are r-separable. We find a condition that is sufficient for a nilpotent group N to have the property r-Sep providede is a root class. We also prove that if N is torsion-free, then the indicated condition is necessary for this group to have r-Sep.
引用
收藏
页码:751 / 777
页数:27
相关论文
共 50 条
  • [21] Effective twisted conjugacy separability of nilpotent groups
    Jonas Deré
    Mark Pengitore
    [J]. Mathematische Zeitschrift, 2019, 292 : 763 - 790
  • [22] Finite groups with a system of nilpotent subgroups
    Li, SR
    Dark, RS
    [J]. ALGEBRA COLLOQUIUM, 2005, 12 (02) : 199 - 204
  • [23] On groups covered by locally nilpotent subgroups
    Detomi, Eloisa
    Morigi, Marta
    Shumyatsky, Pavel
    [J]. ANNALI DI MATEMATICA PURA ED APPLICATA, 2017, 196 (04) : 1525 - 1535
  • [24] Approximate subgroups of residually nilpotent groups
    Matthew C. H. Tointon
    [J]. Mathematische Annalen, 2019, 374 : 499 - 515
  • [25] On groups with nilpotent by Černikov proper subgroups
    Franco Napolitani
    Elisabetta Pegoraro
    [J]. Archiv der Mathematik, 1997, 69 : 89 - 94
  • [26] Generation of finite groups by nilpotent subgroups
    Damian, E
    [J]. BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 2003, 6B (01): : 245 - 255
  • [27] NILPOTENT SUBGROUPS OF FINITE SOLUBLE GROUPS
    HEINEKEN, H
    [J]. ARCHIV DER MATHEMATIK, 1991, 56 (05) : 417 - 423
  • [28] NILPOTENT SUBGROUPS OF MULTIPLICATIVE GROUPS OF FIELDS
    BERNARD, CL
    [J]. COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1976, 282 (19): : 1129 - 1130
  • [29] On finite groups factorized by σ-nilpotent subgroups
    Wu, Zhenfeng
    Zhang, Chi
    Guo, Wenbin
    [J]. COMMUNICATIONS IN ALGEBRA, 2022, 50 (04) : 1785 - 1791
  • [30] LARGE NILPOTENT SUBGROUPS OF POLYCYCLIC GROUPS
    WILSON, JS
    [J]. ARCHIV DER MATHEMATIK, 1982, 39 (01) : 1 - 4