On the Bohr and Selberg inequalities in 2-*-inner product spaces

被引:0
|
作者
Shateri, T. L. [1 ]
Najmabad, B. Mohebbi [2 ]
机构
[1] Hakim Sabzevari Univ, Dept Math & Comp Sci, POB 397, Sabzevar, Iran
[2] Hakim Sabzevari Univ, Sabzeva, Iran
来源
LINEAR & MULTILINEAR ALGEBRA | 2023年 / 71卷 / 03期
关键词
Locally C*-algebra; Hilbert A-module; 2-*-inner product space; inequality;
D O I
10.1080/03081087.2022.2030660
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Bohr inequality occurs for scalars, vectors, matrices and operators. In this paper, we introduce the new type of Bohr's inequality in Hilbert C*-modules and in 2-*-inner product spaces, which is equipped by a 2-inner product map that takes values on locally C*-algebras. Then, we obtain a version of the Selberg and Bessel inequality and its results in an A-2-inner product space.
引用
收藏
页码:348 / 362
页数:15
相关论文
共 50 条
  • [31] 2-HILBERT C*-MODULES AND SOME GRUSS' TYPE INEQUALITIES IN A-2-INNER PRODUCT SPACES
    Mahchari, Tabandeh Mehdiabad
    Nazari, Akbar
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2015, 18 (02): : 721 - 734
  • [32] INNER PRODUCT SPACES
    GUDDER, S
    AMERICAN MATHEMATICAL MONTHLY, 1974, 81 (01): : 29 - 36
  • [33] Some refinements of the triangle and Cauchy-Schwartz inequalities in inner product spaces
    Medghalchi, AR
    Rooin, J
    INEQUALITY THEORY AND APPLICATIONS VOL 3, 2003, : 133 - 138
  • [34] SCHATTEN p-NORM INEQUALITIES RELATED TO A CHARACTERIZATION OF INNER PRODUCT SPACES
    Hirzallah, Omar
    Kittaneh, Fuad
    Moslehian, Mohammad Sal
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2010, 13 (02): : 235 - 241
  • [35] Frames in 2-inner Product Spaces
    Arefijamaal, Ali Akbar
    Sadeghi, Ghadir
    IRANIAN JOURNAL OF MATHEMATICAL SCIENCES AND INFORMATICS, 2013, 8 (02): : 123 - 130
  • [36] SOME COMPANIONS OF GRUSS INEQUALITY IN 2-INNER PRODUCT SPACES AND APPLICATIONS FOR DETERMINANTAL INTEGRAL INEQUALITIES
    Freese, R. W.
    Dragomir, S. S.
    Cho, Y. J.
    Kim, S. S.
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2005, 20 (03): : 487 - 503
  • [37] Inequalities for Inner Product Space
    Dalyay, Pal Peter
    Peifetti, Paolo
    AMERICAN MATHEMATICAL MONTHLY, 2014, 121 (07): : 657 - 657
  • [38] Selberg and refinement type inequalities on semi-Hilbertian spaces
    EL-Fassi, Iz-iddine
    Chahbi, Abdellatif
    Kabbaj, Samir
    INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2022, 13 (02): : 1201 - 1206
  • [39] PARTIAL INNER PRODUCT-SPACES AND SEMI-INNER PRODUCT-SPACES
    ANTOINE, JP
    GUSTAFSON, K
    ADVANCES IN MATHEMATICS, 1981, 41 (03) : 281 - 300
  • [40] Bessel type inequalities for non-orthonormal families of vectors in inner product spaces
    Dragomir, Sever S.
    RIVISTA DI MATEMATICA DELLA UNIVERSITA DI PARMA, 2006, 5 : 93 - 102