On the Bohr and Selberg inequalities in 2-*-inner product spaces

被引:0
|
作者
Shateri, T. L. [1 ]
Najmabad, B. Mohebbi [2 ]
机构
[1] Hakim Sabzevari Univ, Dept Math & Comp Sci, POB 397, Sabzevar, Iran
[2] Hakim Sabzevari Univ, Sabzeva, Iran
来源
LINEAR & MULTILINEAR ALGEBRA | 2023年 / 71卷 / 03期
关键词
Locally C*-algebra; Hilbert A-module; 2-*-inner product space; inequality;
D O I
10.1080/03081087.2022.2030660
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Bohr inequality occurs for scalars, vectors, matrices and operators. In this paper, we introduce the new type of Bohr's inequality in Hilbert C*-modules and in 2-*-inner product spaces, which is equipped by a 2-inner product map that takes values on locally C*-algebras. Then, we obtain a version of the Selberg and Bessel inequality and its results in an A-2-inner product space.
引用
下载
收藏
页码:348 / 362
页数:15
相关论文
共 50 条
  • [21] 2-INNER PRODUCT SPACES
    DIMINNIE, C
    WHITE, A
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 22 (01): : A10 - A10
  • [22] SOME CHARACTERIZATIONS OF INNER PRODUCT SPACES VIA SOME GEOMETRICAL INEQUALITIES
    Stefan, Marinescu Dan
    Mihai, Monea
    Cristinel, Mortici
    APPLICABLE ANALYSIS AND DISCRETE MATHEMATICS, 2017, 11 (02) : 424 - 433
  • [23] On reverse Schwarz, Bessel, Gruss and Hadamard inequalities in inner product spaces
    Otachel, Zdzislaw
    LINEAR & MULTILINEAR ALGEBRA, 2020, 68 (04): : 805 - 827
  • [24] Inequalities of Hlawka's type in G-inner product spaces
    Cho, YJ
    Matic, M
    Pecaric, J
    INEQUALITY THEORY AND APPLICATIONS, VOL 1, 2001, : 95 - 102
  • [25] Unified treatment of complemented Schwarz and Gruss inequalities in inner product spaces
    Elezovic, N
    Marangunic, L
    Pecaric, J
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2005, 8 (02): : 223 - 231
  • [26] REFINEMENTS OF BUZANO'S AND KUREPA'S INEQUALITIES IN INNER PRODUCT SPACES
    Dragomir, Sever S.
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2005, 20 : 65 - 73
  • [27] Some inequalities in inner product spaces related to the generalized triangle inequality
    Dragomir, S. S.
    Cho, Y. J.
    Kim, S. S.
    APPLIED MATHEMATICS AND COMPUTATION, 2011, 217 (18) : 7462 - 7468
  • [28] CHARACTERIZATION OF INNER PRODUCT-SPACES THROUGH RECTANGLE AND SQUARE INEQUALITIES
    BENITEZ, C
    DELRIO, M
    REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES, 1984, 29 (07): : 543 - 546
  • [29] Bessel's and Gruss Inequalities for Orthonormal Families in 2-Inner Product Spaces and Applications
    Dragomir, Sever Silverstru
    Cho, Yeol Je
    Kim, Seong Sik
    Kim, Young-Ho
    KYUNGPOOK MATHEMATICAL JOURNAL, 2008, 48 (02): : 207 - 222
  • [30] On the Cauchy-Schwarz inequality and its reverse in 2-*-semi inner product spaces
    Najmabadi, B. Mohebbi
    Shateri, T. L.
    ARABIAN JOURNAL OF MATHEMATICS, 2020, 9 (01) : 145 - 153