On the Bohr and Selberg inequalities in 2-*-inner product spaces

被引:0
|
作者
Shateri, T. L. [1 ]
Najmabad, B. Mohebbi [2 ]
机构
[1] Hakim Sabzevari Univ, Dept Math & Comp Sci, POB 397, Sabzevar, Iran
[2] Hakim Sabzevari Univ, Sabzeva, Iran
来源
LINEAR & MULTILINEAR ALGEBRA | 2023年 / 71卷 / 03期
关键词
Locally C*-algebra; Hilbert A-module; 2-*-inner product space; inequality;
D O I
10.1080/03081087.2022.2030660
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Bohr inequality occurs for scalars, vectors, matrices and operators. In this paper, we introduce the new type of Bohr's inequality in Hilbert C*-modules and in 2-*-inner product spaces, which is equipped by a 2-inner product map that takes values on locally C*-algebras. Then, we obtain a version of the Selberg and Bessel inequality and its results in an A-2-inner product space.
引用
下载
收藏
页码:348 / 362
页数:15
相关论文
共 50 条
  • [1] BOHR'S INEQUALITIES IN n-INNER PRODUCT SPACES
    Cheung, W. S.
    Cho, Y. J.
    Pecaric, J.
    Zhao, D. D.
    JOURNAL OF THE KOREAN SOCIETY OF MATHEMATICAL EDUCATION SERIES B-PURE AND APPLIED MATHEMATICS, 2007, 14 (02): : 127 - 137
  • [2] Some inequalities in 2-inner product spaces
    Cho, YJ
    Dragomir, SS
    White, A
    Kim, SS
    FIXED POINT THEORY AND APPLICATIONS-BOOK, 2000, : 145 - 155
  • [3] NUMERICAL RADIUS INEQUALITIES IN 2-INNER PRODUCT SPACES
    Harikrishnan, Panackal
    Moradi, Hamid Reza
    Omidvar, Mohsen Erfanian
    KRAGUJEVAC JOURNAL OF MATHEMATICS, 2020, 44 (03): : 415 - 421
  • [4] A TYPE OF ORTHONORMAL BASES ON 2-*-INNER PRODUCT SPACES
    Najmabadi, Behrooz Mohebbi
    Shateri, Tayebe Lal
    Sadeghi, Ghadir
    STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, 2020, 57 (04) : 541 - 551
  • [5] SOME CHARACTERIZATIONS OF INNER PRODUCT SPACES BY INEQUALITIES
    Marinescu, Dan Stefan
    Monea, Mihai
    Stroe, Marian
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2015, 18 (04): : 1375 - 1385
  • [6] NORM INEQUALITIES AND CHARACTERIZATIONS OF INNER PRODUCT SPACES
    Amini-Harandi, A.
    Rahimi, M.
    Rezaie, M.
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2018, 21 (01): : 287 - 300
  • [7] CHARACTERIZATIONS OF INNER PRODUCT SPACES BY INEQUALITIES INVOLVING SEMI-INNER PRODUCT
    Wojcik, Pawel
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2015, 18 (03): : 879 - 885
  • [8] OSTROWSKI AND DRAGOMIR'S INEQUALITIES IN A-2-INNER PRODUCT SPACES
    Najmabadi, Behrooz Mohebbi
    Shateri, Tayebe Lal
    PROCEEDINGS OF THE INSTITUTE OF MATHEMATICS AND MECHANICS, 2019, 45 (01): : 41 - 51
  • [9] NORM INEQUALITIES AND CHARACTERIZATIONS OF INNER-PRODUCT SPACES
    ALRASHED, AM
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1993, 176 (02) : 587 - 593
  • [10] Inequalities involving gram's determinant in 2-inner product spaces
    Kim, SS
    Dragomir, SS
    INEQUALITY THEORY AND APPLICATIONS, VOL 1, 2001, : 183 - 192