C2 interpolation with range restriction

被引:3
|
作者
Fefferman, Charles [1 ]
Jiang, Fushuai [2 ]
Luli, Garving K. [2 ]
机构
[1] Princeton Univ, Dept Math, Fine Hall,304 Washington Rd, Princeton, NJ 08544 USA
[2] Univ Calif Davis, Dept Math, Math Sci Bldg,1 Shields Ave, Davis, CA 95817 USA
基金
美国国家科学基金会;
关键词
Whitney problems; interpolation; range restriction; non-negative; M-SMOOTH FUNCTION; WHITNEYS EXTENSION PROBLEM; SET-VALUED MAPPINGS; C-M EXTENSION; LIPSCHITZ SELECTIONS; FINITENESS PRINCIPLES; CLOSED SUBSET; SPLINES; POINT; SPACE;
D O I
10.4171/RMI/1353
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given-8 < ? < ? < 8, E C R-n finite, and f : E -[?, ?], how can we extend f to a C-m(R-n) function F such that ? = F=A and IIF IIC m(R-n) is within a constant multiple of the least possible, with the constant depending only on m and n? In this paper, we provide the solution to the problem for the case m = 2. Specifi-cally, we construct a (parameter-dependent, nonlinear) C-2(R-n) extension operator that preserves the range [A, A], and we provide an efficient algorithm to compute such an extension using O(N log N) operations, where N = #(E).
引用
收藏
页码:649 / 710
页数:62
相关论文
共 50 条
  • [31] Positivity-preserving C2 rational cubic spline interpolation
    Abbas, Muhammad
    Abd Majid, Ahmad
    Awang, Mohd Nain Hj
    Ali, Jamaludin Md
    SCIENCEASIA, 2013, 39 (02): : 208 - 213
  • [32] C2 Positivity-Preserving Rational Cubic Ball Interpolation
    Jamil, Siti Jasmida
    Piah, Abd Rahni Mt
    PROCEEDINGS OF THE 21ST NATIONAL SYMPOSIUM ON MATHEMATICAL SCIENCES (SKSM21): GERMINATION OF MATHEMATICAL SCIENCES EDUCATION AND RESEARCH TOWARDS GLOBAL SUSTAINABILITY, 2014, 1605 : 337 - 342
  • [33] QUARK C2 IONIZATION-POTENTIALS FROM AN INTERPOLATION METHOD
    HEFFERLIN, R
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1981, 26 (01): : 21 - 21
  • [34] An Arbitrage- Free Interpolation of Class C2 for Option Prices
    Le Floc'h, Fabien
    JOURNAL OF DERIVATIVES, 2021, 28 (04): : 64 - 86
  • [35] Nearly optimal interpolation of data in C2(R2). Part I
    Fefferman, Charles
    REVISTA MATEMATICA IBEROAMERICANA, 2012, 28 (02) : 415 - 533
  • [36] Shape preserving C2 rational quartic interpolation spline with two parameters
    Zhu, Yuanpeng
    Han, Xuli
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2015, 92 (10) : 2160 - 2177
  • [37] Shape-Preserving C2 Functional Interpolation via Parametric Cubics
    P. Lamberti
    C. Manni
    Numerical Algorithms, 2001, 28 : 229 - 254
  • [38] Rational Cubic Spline Interpolation for Monotonic Interpolating Curve with C2 Continuity
    Karim, Samsul Ariffin Bin Abdul
    UTP-UMP SYMPOSIUM ON ENERGY SYSTEMS 2017 (SES 2017), 2017, 131
  • [39] Shape-preserving C2 functional interpolation via parametric cubics
    Lamberti, P
    Manni, C
    NUMERICAL ALGORITHMS, 2001, 28 (1-4) : 229 - 254
  • [40] C2 rational quartic interpolation spline with local shape preserving property
    Zhu, Yuanpeng
    Han, Xuli
    APPLIED MATHEMATICS LETTERS, 2015, 46 : 57 - 63