C2 interpolation with range restriction

被引:3
|
作者
Fefferman, Charles [1 ]
Jiang, Fushuai [2 ]
Luli, Garving K. [2 ]
机构
[1] Princeton Univ, Dept Math, Fine Hall,304 Washington Rd, Princeton, NJ 08544 USA
[2] Univ Calif Davis, Dept Math, Math Sci Bldg,1 Shields Ave, Davis, CA 95817 USA
基金
美国国家科学基金会;
关键词
Whitney problems; interpolation; range restriction; non-negative; M-SMOOTH FUNCTION; WHITNEYS EXTENSION PROBLEM; SET-VALUED MAPPINGS; C-M EXTENSION; LIPSCHITZ SELECTIONS; FINITENESS PRINCIPLES; CLOSED SUBSET; SPLINES; POINT; SPACE;
D O I
10.4171/RMI/1353
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given-8 < ? < ? < 8, E C R-n finite, and f : E -[?, ?], how can we extend f to a C-m(R-n) function F such that ? = F=A and IIF IIC m(R-n) is within a constant multiple of the least possible, with the constant depending only on m and n? In this paper, we provide the solution to the problem for the case m = 2. Specifi-cally, we construct a (parameter-dependent, nonlinear) C-2(R-n) extension operator that preserves the range [A, A], and we provide an efficient algorithm to compute such an extension using O(N log N) operations, where N = #(E).
引用
收藏
页码:649 / 710
页数:62
相关论文
共 50 条
  • [21] An improvement to a C2 quintic spline interpolation scheme on triangulations
    Chen, Sun-Kang
    Liu, Huan-Wen
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2010, 12 (04) : 760 - 767
  • [22] C2 RATIONAL QUADRATIC SPLINE INTERPOLATION TO MONOTONIC DATA
    DELBOURGO, R
    GREGORY, JA
    IMA JOURNAL OF NUMERICAL ANALYSIS, 1983, 3 (02) : 141 - 152
  • [23] A commutant lifting theorem for a domain in C2 and spectral interpolation
    Agler, J
    Young, NJ
    JOURNAL OF FUNCTIONAL ANALYSIS, 1999, 161 (02) : 452 - 477
  • [24] Bezier Curves and C2 Interpolation in Riemannian Symmetric Spaces
    Samir, Chafik
    Adouani, Ines
    GEOMETRIC SCIENCE OF INFORMATION, 2019, 11712 : 589 - 598
  • [25] A class of bivariate rational interpolation surfaces with C2 continuity
    Qin, Xiangbin
    Zhu, Yuanpeng
    Zhu, Yuanpeng (ypzhu@scut.edu.cn), 1600, International Association of Engineers (50): : 601 - 608
  • [26] C2 hermite interpolation by pythagorean hodograph space curves
    Sir, Zbynek
    Juettler, Bert
    MATHEMATICS OF COMPUTATION, 2007, 76 (259) : 1373 - 1391
  • [27] Issues and implementation of C1 and C2 natural neighbor interpolation
    Bobach, T.
    Bertram, M.
    Umlauf, G.
    Advances in Visual Computing, Pt 2, 2006, 4292 : 186 - 195
  • [28] Restriction of holomorphic functions on finite type domains in C2
    Jasiczak, M.
    MANUSCRIPTA MATHEMATICA, 2010, 133 (1-2) : 1 - 18
  • [29] Range restricted C2 interpolant to scattered data
    Saaban, A.
    Piah, A. R. M.
    Majid, A. A.
    COMPUTER GRAPHICS, IMAGING AND VISUALISATION: NEW ADVANCES, 2007, : 183 - +
  • [30] C2 Hermite interpolation by Pythagorean-hodograph quintic triarcs
    Bastl, Bohumir
    Bizzarri, Michal
    Ferjancic, Karla
    Kovac, Bostjan
    Krajnc, Marjeta
    Lavicka, Miroslav
    Michalkova, Kristyna
    Sir, Zbynek
    Zagar, Emil
    COMPUTER AIDED GEOMETRIC DESIGN, 2014, 31 (7-8) : 412 - 426