On chromatic symmetric homology and planarity of graphs

被引:2
|
作者
Ciliberti, Azzurra [1 ]
Moci, Luca [2 ]
机构
[1] Univ Roma La Sapienza, Dept Math, Rome, Italy
[2] Univ Bologna, Dept Math, Bologna, Italy
来源
ELECTRONIC JOURNAL OF COMBINATORICS | 2023年 / 30卷 / 01期
关键词
D O I
10.37236/11397
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Sazdanovic and Yip (2018) defined a categorification of Stanley's chromatic sym-metric function called the chromatic symmetric homology, given by a suitable family of representations of the symmetric group. In this paper we prove that, as conjec-tured by Chandler, Sazdanovic, Stella and Yip (2019), if a graph G is non-planar, then its chromatic symmetric homology in bidegree (1,0) contains Z2-torsion. Our proof follows a recursive argument based on Kuratowsky's theorem.
引用
收藏
页码:1 / 11
页数:11
相关论文
共 50 条