On chromatic symmetric homology and planarity of graphs

被引:2
|
作者
Ciliberti, Azzurra [1 ]
Moci, Luca [2 ]
机构
[1] Univ Roma La Sapienza, Dept Math, Rome, Italy
[2] Univ Bologna, Dept Math, Bologna, Italy
来源
ELECTRONIC JOURNAL OF COMBINATORICS | 2023年 / 30卷 / 01期
关键词
D O I
10.37236/11397
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Sazdanovic and Yip (2018) defined a categorification of Stanley's chromatic sym-metric function called the chromatic symmetric homology, given by a suitable family of representations of the symmetric group. In this paper we prove that, as conjec-tured by Chandler, Sazdanovic, Stella and Yip (2019), if a graph G is non-planar, then its chromatic symmetric homology in bidegree (1,0) contains Z2-torsion. Our proof follows a recursive argument based on Kuratowsky's theorem.
引用
收藏
页码:1 / 11
页数:11
相关论文
共 50 条
  • [21] Planarity and Hyperbolicity in Graphs
    Walter Carballosa
    Ana Portilla
    José M. Rodríguez
    José M. Sigarreta
    Graphs and Combinatorics, 2015, 31 : 1311 - 1324
  • [22] Chromatic homology, Khovanov homology, and torsion
    Lowrance, Adam M.
    Sazdanovic, Radmila
    TOPOLOGY AND ITS APPLICATIONS, 2017, 222 : 77 - 99
  • [23] A Vertex-Weighted Tutte Symmetric Function, and Constructing Graphs with Equal Chromatic Symmetric Function
    Aliste-Prieto, Jose
    Crew, Logan
    Spirkl, Sophie
    Zamora, Jose
    ELECTRONIC JOURNAL OF COMBINATORICS, 2021, 28 (02):
  • [24] Planarity of iterated line graphs
    Ghebleh, Mohammad
    Khatirinejad, Mahdad
    DISCRETE MATHEMATICS, 2008, 308 (01) : 144 - 147
  • [25] Relaxing planarity for topological graphs
    Pach, J
    Radoicic, R
    Tóth, G
    DISCRETE AND COMPUTATIONAL GEOMETRY, 2002, 2866 : 221 - 232
  • [26] Sparse universal graphs for planarity
    Esperet, Louis
    Joret, Gwenael
    Morin, Pat
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2023, 108 (04): : 1333 - 1357
  • [27] On planarity and colorability of circulant graphs
    Heuberger, C
    DISCRETE MATHEMATICS, 2003, 268 (1-3) : 153 - 169
  • [28] Planarity of Iterated Jump Graphs
    魏二玲
    刘彦佩
    Northeastern Mathematical Journal, 2005, (01) : 9 - 17
  • [29] Boolean Planarity Characterization of Graphs
    刘彦佩
    Acta Mathematica Sinica, 1988, (04) : 316 - 329
  • [30] VANISHING GRAPHS, PLANARITY, AND REGGEIZATION
    CICUTA, GM
    PHYSICAL REVIEW LETTERS, 1979, 43 (12) : 826 - 829