On chromatic symmetric homology and planarity of graphs

被引:2
|
作者
Ciliberti, Azzurra [1 ]
Moci, Luca [2 ]
机构
[1] Univ Roma La Sapienza, Dept Math, Rome, Italy
[2] Univ Bologna, Dept Math, Bologna, Italy
来源
ELECTRONIC JOURNAL OF COMBINATORICS | 2023年 / 30卷 / 01期
关键词
D O I
10.37236/11397
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Sazdanovic and Yip (2018) defined a categorification of Stanley's chromatic sym-metric function called the chromatic symmetric homology, given by a suitable family of representations of the symmetric group. In this paper we prove that, as conjec-tured by Chandler, Sazdanovic, Stella and Yip (2019), if a graph G is non-planar, then its chromatic symmetric homology in bidegree (1,0) contains Z2-torsion. Our proof follows a recursive argument based on Kuratowsky's theorem.
引用
收藏
页码:1 / 11
页数:11
相关论文
共 50 条
  • [1] On the strength of chromatic symmetric homology for graphs
    Chandler, Alex
    Sazdanovic, Radmila
    Stella, Salvatore
    Yip, Martha
    ADVANCES IN APPLIED MATHEMATICS, 2023, 150
  • [2] On the Planarity of Graphs Associated with Symmetric and Pseudo Symmetric Numerical Semigroups
    Rao, Yongsheng
    Binyamin, Muhammad Ahsan
    Aslam, Adnan
    Mehtab, Maria
    Fazal, Shazia
    MATHEMATICS, 2023, 11 (07)
  • [3] Graphs with equal chromatic symmetric functions
    Orellana, Rosa
    Scott, Geoffrey
    DISCRETE MATHEMATICS, 2014, 320 : 1 - 14
  • [4] MARKED GRAPHS AND THE CHROMATIC SYMMETRIC FUNCTION
    Aliste-Prieto, Jose
    de Mier, Anna
    Orellana, Rosa
    Zamora, Jose
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2023, 37 (03) : 1881 - 1919
  • [5] ON THE CHROMATIC NUMBER OF CERTAIN HIGHLY SYMMETRIC GRAPHS
    PALFY, PP
    DISCRETE MATHEMATICS, 1985, 54 (01) : 31 - 38
  • [6] On Stanley's chromatic symmetric function and clawfree graphs
    Gasharov, V
    DISCRETE MATHEMATICS, 1999, 205 (1-3) : 229 - 234
  • [7] Chromatic symmetric functions and H-free graphs
    Angèle M. Hamel
    Chính T. Hoàng
    Jake E. Tuero
    Graphs and Combinatorics, 2019, 35 : 815 - 825
  • [8] The Chromatic Symmetric Functions of Trivially Perfect Graphs and Cographs
    Tsujie, Shuhei
    GRAPHS AND COMBINATORICS, 2018, 34 (05) : 1037 - 1048
  • [9] The Chromatic Symmetric Functions of Trivially Perfect Graphs and Cographs
    Shuhei Tsujie
    Graphs and Combinatorics, 2018, 34 : 1037 - 1048
  • [10] Chromatic symmetric functions and H-free graphs
    Hamel, Angele M.
    Hoang, Chinh T.
    Tuero, Jake E.
    GRAPHS AND COMBINATORICS, 2019, 35 (04) : 815 - 825