Lattices;
product of trees;
simple groups;
random complexes;
CAT(0) square complexes;
D O I:
10.4171/CMH/559
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
A BMW group of degree (m, n) is a group that acts simply transitively on vertices of the product of two regular trees of degrees m and n. We show that the number of commensurability classes of BMW groups of degree (m, n) is bounded between (mn)(alpha mn) and (mn)(alpha mn )for some 0 < alpha< beta. In fact, we show that the same bounds hold for virtually simple BMW groups. We introduce a random model for BMW groups of degree (m, n) and show that asymptotically almost surely a random BMW group in this model is irreducible and hereditarily just-infinite.
机构:
Tel Aviv Univ, Sackler Sch Math, Tel Aviv, Israel
Tel Aviv Univ, Blavatnik Sch Comp Sci, Tel Aviv, IsraelTel Aviv Univ, Sackler Sch Math, Tel Aviv, Israel
Alon, Noga
Bissacot, Rodrigo
论文数: 0引用数: 0
h-index: 0
机构:
Univ Sao Paulo, Inst Math & Stat IME USP, Sao Paulo, BrazilTel Aviv Univ, Sackler Sch Math, Tel Aviv, Israel
Bissacot, Rodrigo
Endo, Eric Ossami
论文数: 0引用数: 0
h-index: 0
机构:
Univ Sao Paulo, Inst Math & Stat IME USP, Sao Paulo, Brazil
Univ Groningen, Johann Bernoulli Inst Math & Comp Sci, Groningen, NetherlandsTel Aviv Univ, Sackler Sch Math, Tel Aviv, Israel
Deparment of Systems Science and Industrial Engineering, T. J. Watson School of Engineering and Applied Science, Binghamton University-SUNY, PO Box 6000, Binghamton, NY 13902-6000, United States
论文数: 0引用数: 0
h-index: 0
Deparment of Systems Science and Industrial Engineering, T. J. Watson School of Engineering and Applied Science, Binghamton University-SUNY, PO Box 6000, Binghamton, NY 13902-6000, United States
不详
论文数: 0引用数: 0
h-index: 0
不详
不详
论文数: 0引用数: 0
h-index: 0
不详
Int. J. Uncertainty Fuzziness Knowledge Based Syst.,
2008,
SUPPL. 1
(1-15):