Counting lattices in products of trees

被引:0
|
作者
Lazarovich, Nir [1 ]
Levcovitz, Ivan [2 ]
Margolis, Alex [3 ]
机构
[1] Technion, Dept Math, IL-32000 Haifa, Israel
[2] Tufts Univ, Dept Math, Medford, MA 02155 USA
[3] Ohio State Univ, Dept Math, Columbus, OH 43210 USA
基金
以色列科学基金会;
关键词
Lattices; product of trees; simple groups; random complexes; CAT(0) square complexes;
D O I
10.4171/CMH/559
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A BMW group of degree (m, n) is a group that acts simply transitively on vertices of the product of two regular trees of degrees m and n. We show that the number of commensurability classes of BMW groups of degree (m, n) is bounded between (mn)(alpha mn) and (mn)(alpha mn )for some 0 < alpha< beta. In fact, we show that the same bounds hold for virtually simple BMW groups. We introduce a random model for BMW groups of degree (m, n) and show that asymptotically almost surely a random BMW group in this model is irreducible and hereditarily just-infinite.
引用
收藏
页码:597 / 630
页数:34
相关论文
共 50 条
  • [11] MEDIANS, LATTICES, AND TREES
    SHOLANDER, M
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1954, 5 (05) : 808 - 812
  • [12] LATTICES IN PRODUCT OF TREES
    Burger, Marc
    Mozes, Shahar
    PUBLICATIONS MATHEMATIQUES DE L IHES, 2000, (92): : 151 - 194
  • [13] Lattices isomorphic to subsemilattice lattices of finite trees
    Semenova, M. V.
    Skorobogatov, K. M.
    ALGEBRA AND LOGIC, 2009, 48 (04) : 268 - 281
  • [14] Lattices isomorphic to subsemilattice lattices of finite trees
    M. V. Semenova
    K. M. Skorobogatov
    Algebra and Logic, 2009, 48 : 268 - 281
  • [15] Counting arithmetic lattices and surfaces
    Belolipetsky, Mikhail
    Gelander, Tsachik
    Lubotzky, Alexander
    Shalev, Aner
    ANNALS OF MATHEMATICS, 2010, 172 (03) : 2197 - 2221
  • [16] Counting finite residuated lattices
    Belohlavek, Radim
    Vychodil, Vilem
    FOUNDATIONS OF FUZZY LOGIC AND SOFT COMPUTING, PROCEEDINGS, 2007, 4529 : 461 - +
  • [17] COUNTING FORMULAS FOR GLUED LATTICES
    REUTER, K
    ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 1985, 1 (03): : 265 - 276
  • [18] Basic retracts and counting of lattices
    Bhavale, A. N.
    Waphare, B. N.
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2020, 78 : 73 - 99
  • [19] A Counting Logic for Trees
    Barcenas, Everardo
    COMPUTACION Y SISTEMAS, 2015, 19 (02): : 407 - 422
  • [20] Counting trees in graphs
    Mubayi, Dhruv
    Verstraete, Jacques
    ELECTRONIC JOURNAL OF COMBINATORICS, 2016, 23 (03):