Counting lattices in products of trees

被引:0
|
作者
Lazarovich, Nir [1 ]
Levcovitz, Ivan [2 ]
Margolis, Alex [3 ]
机构
[1] Technion, Dept Math, IL-32000 Haifa, Israel
[2] Tufts Univ, Dept Math, Medford, MA 02155 USA
[3] Ohio State Univ, Dept Math, Columbus, OH 43210 USA
基金
以色列科学基金会;
关键词
Lattices; product of trees; simple groups; random complexes; CAT(0) square complexes;
D O I
10.4171/CMH/559
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A BMW group of degree (m, n) is a group that acts simply transitively on vertices of the product of two regular trees of degrees m and n. We show that the number of commensurability classes of BMW groups of degree (m, n) is bounded between (mn)(alpha mn) and (mn)(alpha mn )for some 0 < alpha< beta. In fact, we show that the same bounds hold for virtually simple BMW groups. We introduce a random model for BMW groups of degree (m, n) and show that asymptotically almost surely a random BMW group in this model is irreducible and hereditarily just-infinite.
引用
收藏
页码:597 / 630
页数:34
相关论文
共 50 条
  • [1] New Simple Lattices in Products of Trees and their Projections
    Radu, Nicolas
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2020, 72 (06): : 1624 - 1690
  • [2] Lattices in products of trees and a theorem of H. C. Wang
    Burger, Marc
    Mozes, Shahar
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2014, 46 : 1126 - 1132
  • [3] Counting finite lattices
    Heitzig, J
    Reinhold, J
    ALGEBRA UNIVERSALIS, 2002, 48 (01) : 43 - 53
  • [4] Counting Finite Lattices
    Jobst Heitzig
    Jürgen Reinhold
    algebra universalis, 2002, 48 : 43 - 53
  • [5] Lattices in product of trees
    Marc Burger
    Shahar Mozes
    Publications Mathématiques de l'Institut des Hautes Études Scientifiques, 2000, 92 (1): : 151 - 194
  • [6] Trees in concept lattices
    Belohlavek, Radim
    De Baets, Bernard
    Outrata, Jan
    Vychodil, Vilem
    MODELING DECISIONS FOR ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2007, 4617 : 174 - +
  • [7] Lattices on parabolic trees
    Carbone, L
    Clark, D
    COMMUNICATIONS IN ALGEBRA, 2002, 30 (04) : 1853 - 1886
  • [8] Lattices on nonuniform trees
    Carbone, L
    Rosenberg, G
    GEOMETRIAE DEDICATA, 2003, 98 (01) : 161 - 188
  • [9] TREES ON HYPERBOLIC LATTICES
    Nemeth, L.
    MISKOLC MATHEMATICAL NOTES, 2015, 16 (01) : 353 - 360
  • [10] Lattices on Nonuniform Trees
    Lisa Carbone
    Gabriel Rosenberg
    Geometriae Dedicata, 2003, 98 : 161 - 188