Approximating the Moments of Generalized Gaussian Distributions via Bell's Polynomials

被引:0
|
作者
Caratelli, Diego [1 ,2 ]
Sabbadini, Ruben [3 ]
Ricci, Paolo Emilio [4 ]
机构
[1] Antenna Co, High Tech Campus 41, NL-5656 AE Eindhoven, Netherlands
[2] Eindhoven Univ Technol, Dept Elect Engn, POB 513, NL-5600 MB Eindhoven, Netherlands
[3] Liceo Sci Statale Farnesina, Via Giuochi Istm 64, I-00135 Rome, Italy
[4] Int Telemat Univ UniNettuno, Dept Math, Corso Vittorio Emanuele 2,39, I-00186 Rome, Italy
关键词
moments of a continuous distribution; Bell's polynomials; generalized Gaussian distributions;
D O I
10.3390/axioms12020206
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Bell's polynomials are used in many different fields of mathematics, ranging from number theory to operator theory. This paper shows a relevant application in probability theory aimed at computing the moments of generalized Gaussian distributions. To this end, a table containing the first values of the complete Bell's polynomials is provided. Furthermore, a dedicated code for approximating the moments of the general distributions in terms of complete Bell's polynomials is detailed. Several test cases concerning different nested functions are discussed.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Multivariate Bell Polynomials, Series, Chain Rules, Moments and Inversion
    Withers, Christopher S.
    Nadarajah, Saralees
    UTILITAS MATHEMATICA, 2010, 83 : 133 - 140
  • [32] LAPLACE TRANSFORM OF ANALYTIC COMPOSITE FUNCTIONS VIA BELL'S POLYNOMIALS
    Ricci, Paolo Emilio
    Caratelli, Diego
    Natalini, Pierpaolo
    APPLICABLE ANALYSIS AND DISCRETE MATHEMATICS, 2024, 18 (01) : 229 - 243
  • [33] Analytic solution to functional differential equations via Bell's polynomials
    Caratelli, Diego
    Natalini, Pierpaolo
    Ricci, Paolo Emilio
    GEORGIAN MATHEMATICAL JOURNAL, 2024, 31 (05) : 745 - 756
  • [34] Approximating moments of continuous functions of random variables using Bernstein polynomials
    Khuri, A. I.
    Mukhopadhyay, S.
    Khuri, M. A.
    STATISTICAL METHODOLOGY, 2015, 24 : 37 - 51
  • [35] On Distributions of Trigonometric Polynomials in Gaussian Random Variables
    Zelenov, G., I
    BULLETIN OF IRKUTSK STATE UNIVERSITY-SERIES MATHEMATICS, 2021, 37 : 77 - 92
  • [36] CHARACTERIZATIONS OF DISTRIBUTIONS VIA MOMENTS
    LIN, GD
    SANKHYA-THE INDIAN JOURNAL OF STATISTICS SERIES A, 1992, 54 : 128 - 132
  • [37] Generalized Geometric Polynomials Via Steffensen’s Generalized Factorials and Tanny’s Operators
    Hacène Belbachir
    Yahia Djemmada
    Indian Journal of Pure and Applied Mathematics, 2020, 51 : 1713 - 1727
  • [38] Generalized Geometric Polynomials Via Steffensen's Generalized Factorials and Tanny's Operators
    Belbachir, Hacene
    Djemmada, Yahia
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2020, 51 (04): : 1713 - 1727
  • [39] CHEBYSHEV-HERMITE POLYNOMIALS AND DISTRIBUTIONS OF POLYNOMIALS IN GAUSSIAN RANDOM VARIABLES
    Bogachev, V., I
    THEORY OF PROBABILITY AND ITS APPLICATIONS, 2021, 66 (04) : 550 - 569
  • [40] Exact solutions of a generalized (2+1)-dimensional soliton equation via Bell polynomials
    Wang, Dan
    Liu, Shu-Li
    Geng, Yong
    Wang, Xiao-Li
    2021 PROCEEDINGS OF THE 40TH CHINESE CONTROL CONFERENCE (CCC), 2021, : 557 - 560