Multivariate Bell Polynomials, Series, Chain Rules, Moments and Inversion

被引:0
|
作者
Withers, Christopher S. [1 ]
Nadarajah, Saralees [2 ]
机构
[1] Ind Res Ltd, Appl Math Grp, Lower Hutt, New Zealand
[2] Univ Manchester, Sch Math, Manchester M13 9PL, Lancs, England
关键词
Bell polynomials; Chain rules; Inversion; Moments; Multivariate series; Series manipulation;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The multivariate Bell polynomials are defined as the coefficients of a power of a multivariate series. We give recurrence relations for them for dimensions 1 to 3. We illustrate their uses in chain rules for differentiating a function of a multivariate function, relating multivariate moments and cumulants, and in multivariate iteration and inversion.
引用
收藏
页码:133 / 140
页数:8
相关论文
共 50 条
  • [1] Relations between multivariate moments and cumulants via Bell polynomials
    Withers, Christopher S.
    Nadarajah, Saralees
    UTILITAS MATHEMATICA, 2013, 91 : 365 - 376
  • [2] Multivariate Bell polynomials
    Withers, Christopher S.
    Nadarajah, Saralees
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2010, 87 (11) : 2607 - 2611
  • [3] Generalized Bell polynomials and the combinatorics of Poisson central moments
    Privault, Nicolas
    ELECTRONIC JOURNAL OF COMBINATORICS, 2011, 18 (01):
  • [4] A New Matrix Inversion for Bell Polynomials and Its Applications
    Jin WANG
    JournalofMathematicalResearchwithApplications, 2019, 39 (04) : 331 - 342
  • [5] The Inverse of Power Series and the Partial Bell Polynomials
    Mihoubi, Miloud
    Mahdid, Rachida
    JOURNAL OF INTEGER SEQUENCES, 2012, 15 (03)
  • [6] Chain rules for multivariate cumulant coefficients
    Withers, Christopher S.
    Nadarajah, Saralees
    STAT, 2022, 11 (01):
  • [7] FOURIER SERIES OF FUNCTIONS RELATED TO ORDERED BELL POLYNOMIALS
    Kim, Taekyun
    Kim, Dae San
    Jang, Gwan-Woo
    Park, Jin-Woo
    UTILITAS MATHEMATICA, 2017, 104 : 67 - 81
  • [8] Approximating the Moments of Generalized Gaussian Distributions via Bell's Polynomials
    Caratelli, Diego
    Sabbadini, Ruben
    Ricci, Paolo Emilio
    AXIOMS, 2023, 12 (02)
  • [9] An extension of the Taylor series expansion by using the Bell polynomials
    Masjed-Jamei, Mohammad
    Moalemi, Zahra
    Koepf, Wolfram
    Srivastava, H. M.
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2019, 113 (02) : 1445 - 1461
  • [10] An extension of the Taylor series expansion by using the Bell polynomials
    Mohammad Masjed-Jamei
    Zahra Moalemi
    Wolfram Koepf
    H. M. Srivastava
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2019, 113 : 1445 - 1461