Metallic nanostructures as electronic billiards for nonlinear terahertz photonics

被引:1
|
作者
Babushkin, Ihar [1 ,2 ,3 ]
Shi, Liping [1 ,3 ,4 ,5 ]
Demircan, Ayhan [1 ,3 ]
Morgner, Uwe [1 ,3 ]
Herrmann, Joachim [2 ]
Husakou, Anton [2 ]
机构
[1] Leibniz Univ Hannover, Inst Quantum Opt, Welfengarten 1, D-30167 Hannover, Germany
[2] Max Born Inst, Max Born Str 2A, D-10117 Berlin, Germany
[3] Cluster Excellence PhoenixD, Welfengarten 1, D-30167 Hannover, Germany
[4] Xidian Univ, Hangzhou Inst Technol, 8 Qiannong East Rd, Hangzhou 311200, Zhejiang, Peoples R China
[5] Xidian Univ, Sch Optoelect Engn, 2 South Taibai Rd, Xian 710071, Shaanxi, Peoples R China
来源
PHYSICAL REVIEW RESEARCH | 2023年 / 5卷 / 04期
基金
欧盟地平线“2020”;
关键词
OPTICAL-PROPERTIES; CONDUCTANCE FLUCTUATIONS; PLASMON RESONANCES; SIZE; GOLD; PARTICLES; EVOLUTION; MODEL; NANOPARTICLES; ABSORPTION;
D O I
10.1103/PhysRevResearch.5.043151
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The optical properties of metallic nanoparticles are most often considered in terms of plasmons, the coupled states of light and quasifree electrons. Confinement of electrons inside the nanostructure leads to another, very different type of resonances. We demonstrate that these confinement-induced resonances typically join into a single composite "super-resonance," located at significantly lower frequencies than the plasmonic resonance. This super-resonance influences the optical properties in the low-frequency range, in particular, producing giant nonlinearities. We show that such nonlinearities can be used for efficient down-conversion from optical to terahertz and midinfrared frequencies on the submicrometer propagation distances in nanocomposites. We discuss the interaction of the quantum-confinement-induced super-resonance with the conventional plasmonic ones, as well as the unusual quantum level statistics, adapting here the paradigms of the quantum billiard theory and showing the possibility to control the resonance position and width using the geometry of the nanostructures.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Superconductor Terahertz Photonics
    Srivastava, Yogesh Kumar
    Singh, Ranjan
    2019 URSI ASIA-PACIFIC RADIO SCIENCE CONFERENCE (AP-RASC), 2019,
  • [22] Breakthroughs in Photonics 2013: Terahertz Wave Photonics
    Ito, Hiromasa
    IEEE PHOTONICS JOURNAL, 2014, 6 (02):
  • [23] Nanostructures for Photonics and Optoelectronics
    Torres-Costa, Vicente
    NANOMATERIALS, 2022, 12 (11)
  • [24] Terahertz-driven nonlinear electrical transport in semiconductor nanostructures
    Zhang, C
    COMMAD 2002 PROCEEDINGS, 2002, : 405 - 408
  • [25] Periodic nanostructures for photonics
    Busch, K.
    von Freymann, G.
    Linden, S.
    Mingaleev, S. F.
    Tkeshelashvili, L.
    Wegener, M.
    PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2007, 444 (3-6): : 101 - 202
  • [26] Photonics of supramolecular nanostructures
    M. V. Alfimov
    Russian Chemical Bulletin, 2004, 53 : 1357 - 1368
  • [27] Photonics of supramolecular nanostructures
    Alfimov, MV
    RUSSIAN CHEMICAL BULLETIN, 2004, 53 (07) : 1357 - 1368
  • [28] Silicon nanostructures for photonics
    Bettotti, P
    Cazzanelli, M
    Dal Negro, L
    Danese, B
    Gaburro, Z
    Oton, CJ
    Prakash, GV
    Pavesi, L
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2002, 14 (35) : 8253 - 8281
  • [29] Silicon nanostructures for photonics
    Pavesi, L
    Bettotti, P
    Cazzanelli, M
    Cella, S
    Daldosso, N
    Dal Negro, L
    Danese, B
    Gaburro, Z
    Oton, CJ
    Pancheri, L
    Prakash, GV
    CAS: 2002 INTERNATIONAL SEMICONDUCTOR CONFERENCE, VOLS 1 AND 2, PROCEEDINGS, 2001, : 103 - 112
  • [30] Terahertz-pulse emission through excitation of surface plasmons in metallic nanostructures
    Welsh, Gregor H.
    Wynne, Klaas
    ULTRAFAST PHENOMENA IN SEMICONDUCTORS AND NANOSTRUCTURE MATERIALS XII, 2008, 6892