TTA-COPE: Test-Time Adaptation for Category-Level Object Pose Estimation

被引:14
|
作者
Lee, Taeyeop [1 ]
Tremblay, Jonathan [2 ]
Blukis, Valts [2 ]
Wen, Bowen [2 ]
Lee, Byeong-Uk [1 ]
Shin, Inkyu [1 ]
Birchfield, Stan [2 ]
Kweon, In So [1 ]
Yoon, Kuk-Jin [1 ]
机构
[1] Korea Adv Inst Sci & Technol, Daejeon, South Korea
[2] NVIDIA, San Francisco, CA USA
关键词
D O I
10.1109/CVPR52729.2023.02039
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Test-time adaptation methods have been gaining attention recently as a practical solution for addressing source-to-target domain gaps by gradually updating the model without requiring labels on the target data. In this paper, we propose a method of test-time adaptation for category-level object pose estimation called TTA-COPE. We design a pose ensemble approach with a self-training loss using pose-aware confidence. Unlike previous unsupervised domain adaptation methods for category-level object pose estimation, our approach processes the test data in a sequential, online manner, and it does not require access to the source domain at runtime. Extensive experimental results demonstrate that the proposed pose ensemble and the self-training loss improve category-level object pose performance during test time under both semi-supervised and unsupervised settings.
引用
收藏
页码:21285 / 21295
页数:11
相关论文
共 50 条
  • [41] RBP-Pose: Residual Bounding Box Projection for Category-Level Pose Estimation
    Zhang, Ruida
    Di, Yan
    Lou, Zhiqiang
    Manhardi, Fabian
    Tombari, Federico
    Ji, Xiangyang
    COMPUTER VISION - ECCV 2022, PT I, 2022, 13661 : 655 - 672
  • [42] Robotic Grasp Detection Based on Category-Level Object Pose Estimation With Self-Supervised Learning
    Yu, Sheng
    Zhai, Di-Hua
    Xia, Yuanqing
    IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2024, 29 (01) : 625 - 635
  • [43] PhoCaL: A Multi-Modal Dataset for Category-Level Object Pose Estimation with Photometrically Challenging Objects
    Wang, Pengyuan
    Jung, HyunJun
    Li, Yitong
    Shen, Siyuan
    Srikanth, Rahul Parthasarathy
    Garattoni, Lorenzo
    Meier, Sven
    Navab, Nassir
    Busam, Benjamin
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 21190 - 21199
  • [44] You Only Look at One: Category-Level Object Representations for Pose Estimation From a Single Example
    Goodwin, Walter
    Havoutis, Ioannis
    Posner, Ingmar
    CONFERENCE ON ROBOT LEARNING, VOL 205, 2022, 205 : 1435 - 1445
  • [45] Category-Level 6-D Object Pose Estimation With Shape Deformation for Robotic Grasp Detection
    Yu, Sheng
    Zhai, Di-Hua
    Guan, Yuyin
    Xia, Yuanqing
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2025, 36 (01) : 1857 - 1871
  • [46] Estimation method of category-level multi-object rigid body 6D pose
    Cheng, Shuo
    Jia, Di
    Yang, Liu
    He, Dekun
    CHINESE JOURNAL OF LIQUID CRYSTALS AND DISPLAYS, 2025, 40 (03) : 457 - 471
  • [47] Toward Real-World Category-Level Articulation Pose Estimation
    Liu, Liu
    Xue, Han
    Xu, Wenqiang
    Fu, Haoyuan
    Lu, Cewu
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2022, 31 : 1072 - 1083
  • [48] Category-Level 6D Object Pose Recovery in Depth Images
    Sahin, Caner
    Kim, Tae-Kyun
    COMPUTER VISION - ECCV 2018 WORKSHOPS, PT I, 2019, 11129 : 665 - 681
  • [49] CATRE: Iterative Point Clouds Alignment for Category-Level Object Pose Refinement
    Liu, Xingyu
    Wang, Gu
    Li, Yi
    Ji, Xiangyang
    COMPUTER VISION - ECCV 2022, PT II, 2022, 13662 : 499 - 516
  • [50] GPV-Pose: Category-level Object Pose Estimation via Geometry-guided Point-wise Voting
    Di, Yan
    Zhang, Ruida
    Lou, Zhiqiang
    Manhardt, Fabian
    Ji, Xiangyang
    Navab, Nassir
    Tombari, Federico
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 6771 - 6781