PhoCaL: A Multi-Modal Dataset for Category-Level Object Pose Estimation with Photometrically Challenging Objects

被引:6
|
作者
Wang, Pengyuan [1 ]
Jung, HyunJun [1 ]
Li, Yitong [1 ]
Shen, Siyuan [1 ]
Srikanth, Rahul Parthasarathy [1 ]
Garattoni, Lorenzo [2 ]
Meier, Sven [2 ]
Navab, Nassir [1 ]
Busam, Benjamin [1 ]
机构
[1] Tech Univ Munich, Munich, Germany
[2] Toyota Motor Europe, Brussels, Belgium
关键词
D O I
10.1109/CVPR52688.2022.02054
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Object pose estimation is crucial for robotic applications and augmented reality. Beyond instance level 6D object pose estimation methods, estimating category-level pose and shape has become a promising trend. As such, a new research field needs to be supported by well-designed datasets. To provide a benchmark with high-quality ground truth annotations to the community, we introduce a multimodal dataset for category-level object pose estimation with photometrically challenging objects termed PhoCaL. PhoCaL comprises 60 high quality 3D models of household objects over 8 categories including highly reflective, transparent and symmetric objects. We developed a novel robot-supported multi-modal (RGB, depth, polarisation) data acquisition and annotation process. It ensures sub-millimeter accuracy of the pose for opaque textured, shiny and transparent objects, no motion blur and perfect camera synchronisation. To set a benchmark for our dataset, state-of-the-art RGB-D and monocular RGB methods are evaluated on the challenging scenes of PhoCaL.
引用
收藏
页码:21190 / 21199
页数:10
相关论文
共 50 条
  • [1] Category-Level Articulated Object Pose Estimation
    Li, Xiaolong
    Wang, He
    Yi, Li
    Guibas, Leonidas
    Abbott, A. Lynn
    Song, Shuran
    [J]. 2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, : 3703 - 3712
  • [2] Category-Level Object Pose Estimation with Statistic Attention
    Jiang, Changhong
    Mu, Xiaoqiao
    Zhang, Bingbing
    Liang, Chao
    Xie, Mujun
    [J]. SENSORS, 2024, 24 (16)
  • [3] A Visual Navigation Perspective for Category-Level Object Pose Estimation
    Guo, Jiaxin
    Zhong, Fangxun
    Xiong, Rong
    Liu, Yunhui
    Wang, Yue
    Liao, Yiyi
    [J]. COMPUTER VISION - ECCV 2022, PT VI, 2022, 13666 : 123 - 141
  • [4] iCaps: Iterative Category-Level Object Pose and Shape Estimation
    Deng, Xinke
    Geng, Junyi
    Bretl, Timothy
    Xiang, Yu
    Fox, Dieter
    [J]. IEEE ROBOTICS AND AUTOMATION LETTERS, 2022, 7 (02): : 1784 - 1791
  • [5] Zero-Shot Category-Level Object Pose Estimation
    Goodwin, Walter
    Vaze, Sagar
    Havoutis, Ioannis
    Posner, Ingmar
    [J]. COMPUTER VISION, ECCV 2022, PT XXXIX, 2022, 13699 : 516 - 532
  • [6] Category-Level Metric Scale Object Shape and Pose Estimation
    Lee, Taeyeop
    Lee, Byeong-Uk
    Kim, Myungchul
    Kweon, I. S.
    [J]. IEEE ROBOTICS AND AUTOMATION LETTERS, 2021, 6 (04) : 8575 - 8582
  • [7] Open-Vocabulary Category-Level Object Pose and Size Estimation
    Cai, Junhao
    He, Yisheng
    Yuan, Weihao
    Zhu, Siyu
    Dong, Zilong
    Bo, Liefeng
    Chen, Qifeng
    [J]. IEEE ROBOTICS AND AUTOMATION LETTERS, 2024, 9 (09): : 7661 - 7668
  • [8] TG-Pose: Delving Into Topology and Geometry for Category-Level Object Pose Estimation
    Zhan, Yue
    Wang, Xin
    Nie, Lang
    Zhao, Yang
    Yang, Tangwen
    Ruan, Qiuqi
    [J]. IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 9749 - 9762
  • [9] GenPose: Generative Category-level Object Pose Estimation via Diffusion Models
    Zhang, Jiyao
    Wu, Mingdong
    Dong, Hao
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [10] HS-Pose: Hybrid Scope Feature Extraction for Category-level Object Pose Estimation
    Zheng, Linfang
    Wang, Chen
    Sun, Yinghan
    Dasgupta, Esha
    Chen, Hua
    Leonardis, Ales
    Zhang, Wei
    Chang, Hyung Jin
    [J]. 2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 17163 - 17173