Quantifying Efficiency of Remote Excitation for Surface-Enhanced Raman Spectroscopy in Molecular Junctions

被引:3
|
作者
Liao, Shusen [1 ,2 ]
Zhu, Yunxuan [2 ]
Ye, Qian [2 ]
Sanders, Stephen [3 ]
Yang, Jiawei [2 ]
Alabastri, Alessandro [3 ]
Natelson, Douglas [2 ,3 ,4 ]
机构
[1] Rice Univ, Smalley Curl Inst, Appl Phys Grad Program, Houston, TX 77005 USA
[2] Rice Univ, Dept Phys & Astron, Houston, TX 77005 USA
[3] Rice Univ, Dept Elect & Comp Engn, Houston, TX 77005 USA
[4] Rice Univ, Dept Mat Sci & Nanoengn, Houston, TX 77005 USA
来源
JOURNAL OF PHYSICAL CHEMISTRY LETTERS | 2023年 / 14卷 / 33期
关键词
AU NANOWIRES; SCATTERING; SERS; 1,4-BENZENEDITHIOL; SPECTRA; GOLD;
D O I
10.1021/acs.jpclett.3c01948
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Surface-enhancedRaman spectroscopy (SERS) is enabled by localsurface plasmon resonances (LSPRs) in metallic nanogaps. When SERSis excited by direct illumination of the nanogap, the background heatingof the lattice and electrons can prevent further manipulation of themolecules. To overcome this issue, we report SERS in electromigratedgold molecular junctions excited remotely: surface plasmon polaritons(SPPs) are excited at nearby gratings, propagate to the junction,and couple to the local nanogap plasmon modes. Like direct excitation,remote excitation of the nanogap can generate both SERS emission andan open-circuit photovoltage (OCPV). We compare the SERS intensityand the OCPV in both direct and remote illumination configurations.SERS spectra obtained by remote excitation are much more stable thanthose obtained through direct excitation when the photon count ratesare comparable. By statistical analysis of 33 devices, the couplingefficiency of remote excitation is calculated to be around 10%, consistentwith the simulated energy flow.
引用
收藏
页码:7574 / 7580
页数:7
相关论文
共 50 条
  • [41] Enhanced Studying Stimulated Raman Activity in Surface-Enhanced Femtosecond Stimulated Raman Spectroscopy by Varying the Excitation Wavelength
    Buchanan, Lauren E.
    McAnally, Michael O.
    Gruenke, Natalie L.
    Schatz, George C.
    Van Duyne, Richard P.
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2017, 8 (14): : 3328 - 3333
  • [42] Surface-enhanced Raman spectroscopyRecent advancement of Raman spectroscopy
    Ujjal Kumar Sur
    Resonance, 2010, 15 (2) : 154 - 164
  • [43] Raman and surface-enhanced Raman spectroscopy of dithiocarbamate fungicides
    Sanchez-Cortes, S
    Vasina, M
    Francioso, O
    Garcia-Ramos, JV
    VIBRATIONAL SPECTROSCOPY, 1998, 17 (02) : 133 - 144
  • [44] Nanowire-supported plasmonic waveguide for remote excitation of surface-enhanced Raman scattering
    Huang, Yingzhou
    Fang, Yurui
    Zhang, Zhenglong
    Zhu, Ling
    Sun, Mengtao
    LIGHT-SCIENCE & APPLICATIONS, 2014, 3 : e199 - e199
  • [45] Nanowire-supported plasmonic waveguide for remote excitation of surface-enhanced Raman scattering
    Yingzhou Huang
    Yurui Fang
    Zhenglong Zhang
    Ling Zhu
    Mengtao Sun
    Light: Science & Applications, 2014, 3 : e199 - e199
  • [46] Discrimination of bacteria and bacteriophages by Raman spectroscopy and surface-enhanced Raman spectroscopy
    Goeller, Lindsay J.
    Riley, Mark R.
    APPLIED SPECTROSCOPY, 2007, 61 (07) : 679 - 685
  • [47] Surface-enhanced Raman spectroscopy in art and archaeology
    Pozzi, Federica
    Leona, Marco
    JOURNAL OF RAMAN SPECTROSCOPY, 2016, 47 (01) : 67 - 77
  • [48] Surface-enhanced Raman spectroscopy of bacteria and pollen
    Sengupta, A
    Laucks, ML
    Davis, EJ
    APPLIED SPECTROSCOPY, 2005, 59 (08) : 1016 - 1023
  • [49] Printing a solution for surface-enhanced Raman spectroscopy
    不详
    ACS NANO, 2008, 2 (02) : 178 - 178
  • [50] Ultrafast and nonlinear surface-enhanced Raman spectroscopy
    Gruenke, Natalie L.
    Cardinal, M. Fernanda
    McAnally, Michael O.
    Frontiera, Renee R.
    Schatza, George C.
    Van Duyne, Richard P.
    CHEMICAL SOCIETY REVIEWS, 2016, 45 (08) : 2263 - 2290