Quantifying Efficiency of Remote Excitation for Surface-Enhanced Raman Spectroscopy in Molecular Junctions

被引:3
|
作者
Liao, Shusen [1 ,2 ]
Zhu, Yunxuan [2 ]
Ye, Qian [2 ]
Sanders, Stephen [3 ]
Yang, Jiawei [2 ]
Alabastri, Alessandro [3 ]
Natelson, Douglas [2 ,3 ,4 ]
机构
[1] Rice Univ, Smalley Curl Inst, Appl Phys Grad Program, Houston, TX 77005 USA
[2] Rice Univ, Dept Phys & Astron, Houston, TX 77005 USA
[3] Rice Univ, Dept Elect & Comp Engn, Houston, TX 77005 USA
[4] Rice Univ, Dept Mat Sci & Nanoengn, Houston, TX 77005 USA
来源
JOURNAL OF PHYSICAL CHEMISTRY LETTERS | 2023年 / 14卷 / 33期
关键词
AU NANOWIRES; SCATTERING; SERS; 1,4-BENZENEDITHIOL; SPECTRA; GOLD;
D O I
10.1021/acs.jpclett.3c01948
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Surface-enhancedRaman spectroscopy (SERS) is enabled by localsurface plasmon resonances (LSPRs) in metallic nanogaps. When SERSis excited by direct illumination of the nanogap, the background heatingof the lattice and electrons can prevent further manipulation of themolecules. To overcome this issue, we report SERS in electromigratedgold molecular junctions excited remotely: surface plasmon polaritons(SPPs) are excited at nearby gratings, propagate to the junction,and couple to the local nanogap plasmon modes. Like direct excitation,remote excitation of the nanogap can generate both SERS emission andan open-circuit photovoltage (OCPV). We compare the SERS intensityand the OCPV in both direct and remote illumination configurations.SERS spectra obtained by remote excitation are much more stable thanthose obtained through direct excitation when the photon count ratesare comparable. By statistical analysis of 33 devices, the couplingefficiency of remote excitation is calculated to be around 10%, consistentwith the simulated energy flow.
引用
收藏
页码:7574 / 7580
页数:7
相关论文
共 50 条
  • [31] Quantitative surface-enhanced Raman spectroscopy
    Bell, Steven E. J.
    Sirimuthu, Narayana M. S.
    CHEMICAL SOCIETY REVIEWS, 2008, 37 (05) : 1012 - 1024
  • [32] Electrochemical surface-enhanced Raman spectroscopy
    不详
    NATURE REVIEWS METHODS PRIMERS, 2023, 3 (01):
  • [33] Surface-enhanced Raman Spectroscopy of Pterins
    Smyth, Ciaran A.
    Mirza, Inam
    Lunney, James G.
    McCabe, Eithne M.
    PLASMONICS IN BIOLOGY AND MEDICINE IX, 2012, 8234
  • [34] Reproducibility in surface-enhanced Raman spectroscopy
    Xiong M.
    Ye J.
    Journal of Shanghai Jiaotong University (Science), 2014, 19 (06) : 681 - 690
  • [35] Urinalysis by surface-enhanced Raman spectroscopy
    Farquharson, S
    Lee, YH
    Kwon, H
    Shahriari, M
    Rainey, P
    SPACE TECHNOLOGY AND APPLICATIONS INTERNATIONAL FORUM, PTS 1 AND 2, 2000, 504 : 306 - 311
  • [36] Surface-enhanced Raman spectroscopy of DNA
    Barhoumi, Aoune
    Zhang, Dongmao
    Tam, Felicia
    Halas, Naomi J.
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (16) : 5523 - 5529
  • [37] Electrochemical surface-enhanced Raman spectroscopy
    Nature Reviews Methods Primers, 3
  • [38] Surface-Enhanced Raman Spectroscopy Recent Advancement of Raman Spectroscopy
    Sur, Ujjal Kumar
    RESONANCE-JOURNAL OF SCIENCE EDUCATION, 2010, 15 (02): : 154 - 164
  • [39] Surface-enhanced Raman spectroscopy of Quinacrine:: An effect of excitation wavelengths and pH.
    Rivas, L
    Sánchez-Cortés, S
    García-Ramos, JV
    SPECTROSCOPY OF BIOLOGICAL MOLECULES: NEW DIRECTIONS, 1999, : 271 - 272
  • [40] Surface-enhanced resonance Raman spectroscopy of hypocrellin A: an effect of excitation wavelength and pH
    Jancura, D
    Sanchez-Cortes, S
    Miskovsky, P
    Rivas, L
    Stanicova, J
    Garcia-Ramos, JV
    SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY, 1998, 54 (10) : 1519 - 1526