Quantifying Efficiency of Remote Excitation for Surface-Enhanced Raman Spectroscopy in Molecular Junctions

被引:3
|
作者
Liao, Shusen [1 ,2 ]
Zhu, Yunxuan [2 ]
Ye, Qian [2 ]
Sanders, Stephen [3 ]
Yang, Jiawei [2 ]
Alabastri, Alessandro [3 ]
Natelson, Douglas [2 ,3 ,4 ]
机构
[1] Rice Univ, Smalley Curl Inst, Appl Phys Grad Program, Houston, TX 77005 USA
[2] Rice Univ, Dept Phys & Astron, Houston, TX 77005 USA
[3] Rice Univ, Dept Elect & Comp Engn, Houston, TX 77005 USA
[4] Rice Univ, Dept Mat Sci & Nanoengn, Houston, TX 77005 USA
来源
JOURNAL OF PHYSICAL CHEMISTRY LETTERS | 2023年 / 14卷 / 33期
关键词
AU NANOWIRES; SCATTERING; SERS; 1,4-BENZENEDITHIOL; SPECTRA; GOLD;
D O I
10.1021/acs.jpclett.3c01948
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Surface-enhancedRaman spectroscopy (SERS) is enabled by localsurface plasmon resonances (LSPRs) in metallic nanogaps. When SERSis excited by direct illumination of the nanogap, the background heatingof the lattice and electrons can prevent further manipulation of themolecules. To overcome this issue, we report SERS in electromigratedgold molecular junctions excited remotely: surface plasmon polaritons(SPPs) are excited at nearby gratings, propagate to the junction,and couple to the local nanogap plasmon modes. Like direct excitation,remote excitation of the nanogap can generate both SERS emission andan open-circuit photovoltage (OCPV). We compare the SERS intensityand the OCPV in both direct and remote illumination configurations.SERS spectra obtained by remote excitation are much more stable thanthose obtained through direct excitation when the photon count ratesare comparable. By statistical analysis of 33 devices, the couplingefficiency of remote excitation is calculated to be around 10%, consistentwith the simulated energy flow.
引用
收藏
页码:7574 / 7580
页数:7
相关论文
共 50 条
  • [1] Surface-Enhanced Raman Scattering in Molecular Junctions
    Iwane, Madoka
    Fujii, Shintaro
    Kiguchi, Manabu
    SENSORS, 2017, 17 (08):
  • [2] Propagating surface plasmon polaritons for remote excitation surface-enhanced Raman scattering spectroscopy
    Lin, Weihua
    Xu, Xuefeng
    Quan, Jun
    Sun, Mengtao
    APPLIED SPECTROSCOPY REVIEWS, 2018, 53 (10) : 771 - 782
  • [3] Surface-enhanced Raman spectroscopy with ultraviolet excitation
    Lin, XF
    Ren, B
    Yang, ZL
    Liu, GK
    Tian, ZQ
    JOURNAL OF RAMAN SPECTROSCOPY, 2005, 36 (6-7) : 606 - 612
  • [4] Wavelength-scanned surface-enhanced Raman excitation spectroscopy
    McFarland, AD
    Young, MA
    Dieringer, JA
    Van Duyne, RP
    JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109 (22): : 11279 - 11285
  • [5] Plasmon-sampled surface-enhanced Raman excitation spectroscopy
    Haynes, CL
    Van Duyne, RP
    JOURNAL OF PHYSICAL CHEMISTRY B, 2003, 107 (30): : 7426 - 7433
  • [6] Molecular spectroscopy workbench, surface-enhanced Raman scattering
    Adar, Fran
    SPECTROSCOPY, 2008, 23 (02) : 20 - +
  • [7] Remote excitation and detection of surface-enhanced Raman scattering from graphene
    Coca-Lopez, Nicolas
    Hartmann, Nicolai F.
    Mancabelli, Tobia
    Kraus, Juergen
    Guenther, Sebastian
    Comin, Alberto
    Hartschuh, Achim
    NANOSCALE, 2018, 10 (22) : 10498 - 10504
  • [8] Surface-Enhanced Raman Spectroscopy: Investigations at the Nanorod Edges and Dimer Junctions
    Kumar, Jatish
    Thomas, K. George
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2011, 2 (06): : 610 - 615
  • [9] Surface-enhanced Raman spectroscopy
    Nature Reviews Methods Primers, 1
  • [10] Surface-enhanced Raman Spectroscopy
    Tomoaki Nishino
    Analytical Sciences, 2018, 34 : 1061 - 1062