Development and Validation of an Explainable Machine Learning-Based Prediction Model for Drug-Food Interactions from Chemical Structures

被引:21
|
作者
Kha, Quang-Hien [1 ,2 ]
Le, Viet-Huan [1 ,2 ,3 ]
Hung, Truong Nguyen Khanh [4 ]
Nguyen, Ngan Thi Kim [5 ]
Le, Nguyen Quoc Khanh [2 ,6 ,7 ,8 ]
机构
[1] Taipei Med Univ, Coll Med, Int PhD Program Med, Taipei 110, Taiwan
[2] Taipei Med Univ, AIBioMed Res Grp, Taipei 110, Taiwan
[3] Khanh Hoa Gen Hosp, Dept Thorac Surg, Nha Trang 65000, Vietnam
[4] Cho Ray Hosp, Dept Orthoped & Trauma, Ho Chi Minh City 70000, Vietnam
[5] Natl Taiwan Normal Univ, Undergraduate Program Nutr Sci, Taipei 106, Taiwan
[6] Taipei Med Univ, Coll Med, Profess Master Program Artificial Intelligence Med, Taipei 110, Taiwan
[7] Taipei Med Univ, Res Ctr Artificial Intelligence Med, Taipei 110, Taiwan
[8] Taipei Med Univ Hosp, Translat Imaging Res Ctr, Taipei 110, Taiwan
关键词
adverse food reaction; chemical informatics; drug-food interactions; drug-nutrient interactions; DrugBank; explainable artificial intelligence; FooDB; machine learning; precision medicine; simplified molecular-input line-entry system; GRAPEFRUIT JUICE; ALCOHOL-CONSUMPTION; VITAMIN-K; ABSORPTION; HEPATOTOXICITY; METHOTREXATE; WARFARIN; HUMANS; RISK;
D O I
10.3390/s23083962
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Possible drug-food constituent interactions (DFIs) could change the intended efficiency of particular therapeutics in medical practice. The increasing number of multiple-drug prescriptions leads to the rise of drug-drug interactions (DDIs) and DFIs. These adverse interactions lead to other implications, e.g., the decline in medicament's effect, the withdrawals of various medications, and harmful impacts on the patients' health. However, the importance of DFIs remains underestimated, as the number of studies on these topics is constrained. Recently, scientists have applied artificial intelligence-based models to study DFIs. However, there were still some limitations in data mining, input, and detailed annotations. This study proposed a novel prediction model to address the limitations of previous studies. In detail, we extracted 70,477 food compounds from the FooDB database and 13,580 drugs from the DrugBank database. We extracted 3780 features from each drug-food compound pair. The optimal model was eXtreme Gradient Boosting (XGBoost). We also validated the performance of our model on one external test set from a previous study which contained 1922 DFIs. Finally, we applied our model to recommend whether a drug should or should not be taken with some food compounds based on their interactions. The model can provide highly accurate and clinically relevant recommendations, especially for DFIs that may cause severe adverse events and even death. Our proposed model can contribute to developing more robust predictive models to help patients, under the supervision and consultants of physicians, avoid DFI adverse effects in combining drugs and foods for therapy.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Development and Internal Validation of a Novel Machine Learning-Based Prediction Tool for Postoperative Respiratory Failure
    Kiyatkin, Michael E.
    Aasman, Boudewijn
    Fazzari, Melissa J.
    Wachtendorf, Luca J.
    Gong, Michelle N.
    ANESTHESIA AND ANALGESIA, 2022, 134 : 180 - 180
  • [32] Development and validation of a machine learning-based nomogram for prediction of intrahepatic cholangiocarcinoma in patients with intrahepatic lithiasis
    Shen, Xian
    Zhao, Huanhu
    Jin, Xing
    Chen, Junyu
    Yu, Zhengping
    Ramen, Kuvaneshan
    Zheng, Xiangwu
    Wu, Xiuling
    Shan, Yunfeng
    Bai, Jianling
    Zhang, Qiyu
    Zeng, Qiqiang
    HEPATOBILIARY SURGERY AND NUTRITION, 2021, 10 (06) : 749 - +
  • [33] Development and validation of machine learning-based models for prediction of adolescent idiopathic scoliosis: A retrospective study
    Lv, Zheng
    Lv, Wen
    Wang, Lei
    Ou, Jiayuan
    MEDICINE, 2023, 102 (14) : E33441
  • [34] Development and validation of a machine learning-based vocal predictive model for major depressive disorder
    Wasserzug, Yael
    Degani, Yoav
    Bar-Shaked, Mili
    Binyamin, Milana
    Klein, Amit
    Hershko, Shani
    Levkovitch, Yechiel
    JOURNAL OF AFFECTIVE DISORDERS, 2023, 325 : 627 - 632
  • [35] Derivation and validation of a machine learning-based risk prediction model in patients with acute heart failure
    Misumi, Kayo
    Matsue, Yuya
    Nogi, Kazutaka
    Fujimoto, Yudai
    Kagiyama, Nobuyuki
    Kasai, Takatoshi
    Kitai, Takeshi
    Oishi, Shogo
    Akiyama, Eiichi
    Suzuki, Satoshi
    Yamamoto, Masayoshi
    Kida, Keisuke
    Okumura, Takahiro
    Nogi, Maki
    Ishihara, Satomi
    Ueda, Tomoya
    Kawakami, Rika
    Saito, Yoshihiko
    Minamino, Tohru
    JOURNAL OF CARDIOLOGY, 2023, 81 (06) : 531 - 536
  • [36] Comment on 'study and validation of an explainable machine learning-based mortality prediction following emergency surgery in the elderly: a prospective observational study'
    Zheng, Juanqing
    INTERNATIONAL JOURNAL OF SURGERY, 2023, 109 (04) : 1066 - 1067
  • [37] Development of a machine learning-based risk prediction model for cerebral infarction and comparison with nomogram model
    Li, Xuewen
    Wang, Yiting
    Xu, Jiancheng
    JOURNAL OF AFFECTIVE DISORDERS, 2022, 314 : 341 - 348
  • [38] XGraphCDS: An explainable deep learning model for predicting drug sensitivity from gene pathways and chemical structures
    Wang, Yimeng
    Yu, Xinxin
    Gu, Yaxin
    Li, Weihua
    Zhu, Keyun
    Chen, Long
    Tang, Yun
    Liu, Guixia
    COMPUTERS IN BIOLOGY AND MEDICINE, 2024, 168
  • [39] Recent development of machine learning models for the prediction of drug-drug interactions
    Eujin Hong
    Junhyeok Jeon
    Hyun Uk Kim
    Korean Journal of Chemical Engineering, 2023, 40 : 276 - 285
  • [40] Recent development of machine learning models for the prediction of drug-drug interactions
    Hong, Eujin
    Jeon, Junhyeok
    Kim, Hyun Uk
    KOREAN JOURNAL OF CHEMICAL ENGINEERING, 2023, 40 (02) : 276 - 285