Microstructural evolution and mechanical properties of Ti-6Al-4V in situ alloyed with 3.5 wt.% Cu by laser powder bed fusion

被引:9
|
作者
Goettgens, Valerie Sue [1 ]
Kaserer, Lukas [1 ]
Braun, Jakob [1 ]
Busch, Richard [2 ]
Berthold, Lutz [2 ]
Patzig, Christian [2 ]
Leichtfried, Gerhard [1 ]
机构
[1] Univ Innsbruck, Fac Engn Sci, Dept Struct Engn & Mat Sci, Mat Technol, Tech Str 13, A-6020 Innsbruck, Austria
[2] Fraunhofer Inst Microstruct Mat & Syst IMWS, Walter Hulse Str 1, D-06120 Halle, Saale, Germany
关键词
Laser powder bed fusion; Additive manufacturing; Titanium alloy; Alloy design; TENSILE PROPERTIES; TITANIUM-ALLOY; FATIGUE RESISTANCE; HEAT-TREATMENT; MARTENSITE; DUCTILITY; ALPHA; DECOMPOSITION; IMPROVEMENT; BEHAVIOR;
D O I
10.1016/j.mtla.2023.101928
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The present work deals with the fabrication of Ti-6Al-4V in situ alloyed with 3.5 wt.% Cu (Ti-6Al-4V-3.5Cu), its microstructural evolution, and its related tensile properties. Specimens with a relative density of 99 +/- 0.1% presented a microstructure that differed from that of pure Ti-6Al-4V in LPBF, which usually exhibits a fully martensitic structure (alpha '). In Ti-6Al-4V-3.5Cu, apart from alpha-Ti, beta-Ti, and intermetallic Ti2Cu were also observed, generated by in situ martensite decomposition. Initially solidified large columnar beta-Ti grains underwent a martensitic transformation to alpha '. Cyclic reheating caused by layer-wise deposition during LPBF enabled the diffusion of Cu and V, allowing the transformation of alpha ' to stable alpha-Ti and the precipitation of beta-Ti and Ti2Cu. The alpha ' decomposition and formation of beta-Ti and Ti2Cu contributed to an UTS of 1362 +/- 14 MPa and an Rp0.2 of 1313 +/- 14 MPa in the horizontal specimen orientation in the as-built state. The elongation at fracture was 3.9 +/- 0.6%. In the vertical orientation, the specimens exhibited an UTS of 1305 +/- 19 MPa, an Rp0.2 of 1215 +/- 23 MPa, and an elongation at fracture of 5.4 +/- 1.5%. Stress-relief annealing reduced the UTS and Rp0.2 to 1099 +/- 6 MPa and 1014 +/- 5 MPa, respectively, with an increase in elongation at fracture to 6.7 +/- 0.4% in the horizontal specimen orientation. In the vertical specimen orientation, stress relief annealing resulted in an UTS of 1051 +/- 13 MPa and an Rp0.2 of 926 +/- 18 MPa. The elongation at fracture was increased to 11.3 +/- 1.3%.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] A study on surface morphology and tension in laser powder bed fusion of Ti-6Al-4V
    Khorasani, Mahyar
    Ghasemi, AmirHossein
    Awan, Umar Shafique
    Hadavi, Elahe
    Leary, Martin
    Brandt, Milan
    Littlefair, Guy
    O'Neil, William
    Gibson, Ian
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2020, 111 (9-10): : 2891 - 2909
  • [42] A study on surface morphology and tension in laser powder bed fusion of Ti-6Al-4V
    Mahyar Khorasani
    AmirHossein Ghasemi
    Umar Shafique Awan
    Elahe Hadavi
    Martin Leary
    Milan Brandt
    Guy Littlefair
    William O’Neil
    Ian Gibson
    The International Journal of Advanced Manufacturing Technology, 2020, 111 : 2891 - 2909
  • [43] Influence of laser post-processing on pore evolution of Ti-6Al-4V alloy by laser powder bed fusion
    Shen, Bingnan
    Li, Hui
    Liu, Sheng
    Zou, Jing
    Shen, Shengnan
    Wang, Yinghe
    Zhang, Tao
    Zhang, Dongqi
    Chen, Yinghua
    Qi, Haiqin
    JOURNAL OF ALLOYS AND COMPOUNDS, 2020, 818 (818)
  • [44] Effect of post-processing treatments on surface roughness and mechanical properties of laser powder bed fusion of Ti-6Al-4V
    Soe, Aung Nyein
    Sombatmai, Atikom
    Promoppatum, Patcharapit
    Srimaneepong, Viritpon
    Trachoo, Vorapat
    Pandee, Phromphong
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2024, 32 : 3788 - 3803
  • [45] Effect of processing parameters on pore structures, grain features, and mechanical properties in Ti-6Al-4V by laser powder bed fusion
    Luo, Qixiang
    Yin, Lu
    Simpson, Timothy W.
    Beese, Allison M.
    ADDITIVE MANUFACTURING, 2022, 56
  • [46] Mechanical properties of diamond lattice Ti-6Al-4V structures produced by laser powder bed fusion: On the effect of the load direction
    Cutolo, Antonio
    Engelen, Bert
    Desmet, Wim
    Van Hooreweder, Brecht
    JOURNAL OF THE MECHANICAL BEHAVIOR OF BIOMEDICAL MATERIALS, 2020, 104
  • [47] Stability of Ti-6Al-4V Mechanical Properties Across Laser Powder Bed Fusion Vendors and Platforms: Insights on Material Maturity
    Porsch, Kourtney
    Piloseno, Bianca
    Presley, Michael
    Croom, Brendan P.
    Rettaliata, Justin
    Gienger, Edwin B.
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2024,
  • [48] Optimization of microstructural manipulation and ductility in laser powder bed fusion Ti-6Al-4V through hydrogen heat treatments
    Dunstan, Matthew K.
    Vaughn, Matthew O.
    Paramore, James D.
    Butler, Brady G.
    Kudzal, Andelle D.
    Hemker, Kevin J.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2023, 873
  • [49] Effect of energy density on the microstructure and texture evolution of Ti-6Al-4V manufactured by laser powder bed fusion
    Cepeda-Jimenez, C. M.
    Potenza, F.
    Magalini, E.
    Luchin, V
    Molinari, A.
    Perez-Prado, M. T.
    MATERIALS CHARACTERIZATION, 2020, 163
  • [50] The effect of process parameters on residual stress evolution and distortion in the laser powder bed fusion of Ti-6Al-4V
    Levkulich, N. C.
    Semiatin, S. L.
    Gockel, J. E.
    Middendorf, J. R.
    DeWald, A. T.
    Klingbeil, N. W.
    ADDITIVE MANUFACTURING, 2019, 28 : 475 - 484