AFFINE LIE ALGEBRA REPRESENTATIONS INDUCED FROM WHITTAKER MODULES

被引:5
|
作者
Cardoso, Maria Clara [1 ]
Futorny, Vyacheslav [2 ,3 ]
机构
[1] Univ Sao Paulo, Inst Matemat & Estat, Sao Paulo, Brazil
[2] SUSTECH, Shenzhen, Peoples R China
[3] Univ Sao Paulo, Sao Paulo, Brazil
基金
巴西圣保罗研究基金会;
关键词
VERMA MODULES; REALIZATIONS; HEISENBERG;
D O I
10.1090/proc/16209
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
. We use induction from parabolic subalgebras with infinite-dimensional Levi factor to construct new families of irreducible representations for arbitrary affine Kac-Moody algebras. Our first construction defines a functor from the category of Whittaker modules over the Levi factor of a parabolic subalgebra to the category of modules over the affine Lie algebra. The second functor sends tensor products of a module over the affine part of the Levi factor (in particular any weight module) and of a Whittaker module over the complement Heisenberg subalgebra to the affine Lie algebra modules. Both functors preserve irreducibility when the central charge is nonzero.
引用
收藏
页码:1041 / 1053
页数:13
相关论文
共 50 条
  • [41] Whittaker modules over loop Virasoro algebra
    Liu, Xuewen
    Guo, Xiangqian
    FRONTIERS OF MATHEMATICS IN CHINA, 2013, 8 (02) : 393 - 410
  • [42] Whittaker modules over loop Virasoro algebra
    Xuewen Liu
    Xiangqian Guo
    Frontiers of Mathematics in China, 2013, 8 : 393 - 410
  • [43] Whittaker modules for the Schrodinger-Witt algebra
    Zhang, Xiufu
    Tan, Shaobin
    Lian, Haifeng
    JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (08)
  • [44] Quasi-Whittaker modules for the Schrodinger algebra
    Cai, Yan-an
    Cheng, Yongsheng
    Shen, Ran
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2014, 463 : 16 - 32
  • [45] Representations of affine Lie superalgebras
    Futorny, V
    Groups, Rings and Group Rings, 2006, 248 : 163 - 172
  • [46] ROOT COMPONENTS FOR TENSOR PRODUCT OF AFFINE KAC-MOODY LIE ALGEBRA MODULES
    Jeralds, Samuel
    Kumar, Shrawan
    REPRESENTATION THEORY, 2022, 26 : 825 - 858
  • [47] FREE FIELD REALIZATIONS OF INDUCED MODULES FOR AFFINE LIE ALGEBRAS
    Kashuba, Iryna
    Martins, Renato A.
    COMMUNICATIONS IN ALGEBRA, 2014, 42 (06) : 2428 - 2441
  • [48] IRREDUCIBLE WAKIMOTO-LIKE MODULES FOR THE AFFINE LIE ALGEBRA <(gln)over cap>
    Gao, Yun
    Zeng, Ziting
    QUANTIZED ALGEBRA AND PHYSICS, 2012, 8 : 52 - 67
  • [49] ON PRINCIPAL REALIZATION OF MODULES FOR THE AFFINE LIE ALGEBRA A1(1) AT THE CRITICAL LEVEL
    Adamovic, Drazen
    Jing, Naihuan
    Misra, Kailash C.
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 369 (07) : 5113 - 5136
  • [50] On Lie algebra crossed modules
    Wagemann, F
    COMMUNICATIONS IN ALGEBRA, 2006, 34 (05) : 1699 - 1722