AFFINE LIE ALGEBRA REPRESENTATIONS INDUCED FROM WHITTAKER MODULES

被引:5
|
作者
Cardoso, Maria Clara [1 ]
Futorny, Vyacheslav [2 ,3 ]
机构
[1] Univ Sao Paulo, Inst Matemat & Estat, Sao Paulo, Brazil
[2] SUSTECH, Shenzhen, Peoples R China
[3] Univ Sao Paulo, Sao Paulo, Brazil
基金
巴西圣保罗研究基金会;
关键词
VERMA MODULES; REALIZATIONS; HEISENBERG;
D O I
10.1090/proc/16209
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
. We use induction from parabolic subalgebras with infinite-dimensional Levi factor to construct new families of irreducible representations for arbitrary affine Kac-Moody algebras. Our first construction defines a functor from the category of Whittaker modules over the Levi factor of a parabolic subalgebra to the category of modules over the affine Lie algebra. The second functor sends tensor products of a module over the affine part of the Levi factor (in particular any weight module) and of a Whittaker module over the complement Heisenberg subalgebra to the affine Lie algebra modules. Both functors preserve irreducibility when the central charge is nonzero.
引用
收藏
页码:1041 / 1053
页数:13
相关论文
共 50 条