Quantum computation of thermal averages for a non-Abelian D4 lattice gauge theory via quantum Metropolis sampling

被引:0
|
作者
Ballini, Edoardo [1 ,2 ,3 ]
Clemente, Giuseppe [4 ,5 ,6 ]
D 'Elia, Massimo [6 ]
Maio, Lorenzo [5 ,6 ,7 ]
Zambello, Kevin [5 ,6 ]
机构
[1] Univ Trento, Pitaevskii BEC Ctr, Via Sommar 14, I-38123 Trento, Italy
[2] Univ Trento, Dept Phys, Via Sommar 14, I-38123 Trento, Italy
[3] Trento Inst Fundamental Phys & Applicat TIFPA, INFN, Via Sommar 14, I-38123 Trento, Italy
[4] Deutsch Elektronen Synchrotron DESY, Platanenallee 6, D-15738 Zeuthen, Germany
[5] Univ Pisa, Dipartimento Fis, Largo Pontecorvo 3, I-56127 Pisa, Italy
[6] Sez Pisa, INFN, Largo Pontecorvo 3, I-56127 Pisa, Italy
[7] Aix Marseille Univ, Univ Toulon, CNRS, CPT,UMR 7332, F-13288 Marseille, France
基金
欧洲研究理事会;
关键词
CONFINEMENT; KERNEL;
D O I
10.1103/PhysRevD.109.034510
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In this paper, we show the application of the quantum Metropolis sampling (QMS) algorithm to a toy gauge theory with discrete non-Abelian gauge group D4 in (2 + 1)-dimensions, discussing in general how some components of hybrid quantum-classical algorithms should be adapted in the case of gauge theories. In particular, we discuss the construction of random unitary operators which preserve gauge invariance and act transitively on the physical Hilbert space, constituting an ergodic set of quantum Metropolis moves between gauge invariant eigenspaces, and introduce a protocol for gauge invariant measurements. Furthermore, we show how a finite resolution in the energy measurements distorts the energy and plaquette distribution measured via QMS, and propose a heuristic model that takes into account part of the deviations between numerical results and exact analytical results, whose discrepancy tends to vanish by increasing the number of qubits used for the energy measurements.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] On entanglement entropy in non-Abelian lattice gauge theory and 3D quantum gravity
    Clement Delcamp
    Bianca Dittrich
    Aldo Riello
    Journal of High Energy Physics, 2016
  • [2] On entanglement entropy in non-Abelian lattice gauge theory and 3D quantum gravity
    Delcamp, Clement
    Dittrich, Bianca
    Riello, Aldo
    JOURNAL OF HIGH ENERGY PHYSICS, 2016, (11):
  • [3] Quantum walks and non-Abelian discrete gauge theory
    Arnault, Pablo
    Di Molfetta, Giuseppe
    Brachet, Marc
    Debbasch, Fabrice
    PHYSICAL REVIEW A, 2016, 94 (01)
  • [4] General quantum algorithms for Hamiltonian simulation with applications to a non-Abelian lattice gauge theory
    Davoudi, Zohreh
    Shaw, Alexander F.
    Stryker, Jesse R.
    QUANTUM, 2023, 7
  • [5] Non-Abelian vortex in lattice gauge theory
    Yamamoto, Arata
    PROGRESS OF THEORETICAL AND EXPERIMENTAL PHYSICS, 2018, 2018 (10):
  • [6] The dual of non-Abelian Lattice Gauge Theory
    Pfeiffer, H
    Oeckl, R
    NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2002, 106 : 1010 - 1012
  • [7] Confinement in non-Abelian lattice gauge theory via persistent homology
    Spitz, Daniel
    Urban, Julian M.
    Pawlowski, Jan M.
    PHYSICAL REVIEW D, 2023, 107 (03)
  • [8] NON-ABELIAN GAUGE-THEORY FOR QUANTUM HEISENBERG ANTIFERROMAGNETIC CHAIN
    ITOI, C
    MUKAIDA, H
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1994, 27 (13): : 4695 - 4708
  • [9] SUBSIDIARY CONDITION IN QUANTUM-THEORY OF NON-ABELIAN GAUGE FIELDS
    OKABAYASHI, T
    YOSHIHUKU, Y
    PROGRESS OF THEORETICAL PHYSICS, 1975, 54 (03): : 878 - 892
  • [10] Non-Abelian Berry connections for quantum computation
    Inst. for Sci. Interchange Found., Villa Gualino, Viale Settimio Severo 65, I-10133 Torino, Italy
    不详
    不详
    Physical Review A - Atomic, Molecular, and Optical Physics, 2000, 61 (01): : 103051 - 103054