Effect of Different Confinements on High-Strength Steel Fiber-Reinforced Concrete (SFRC) Beams

被引:1
|
作者
Hafeez, Hammad [1 ]
Ahmad, Waqas [1 ]
Usman, Muhammad [1 ]
Hanif, Asad [2 ,3 ]
机构
[1] Natl Univ Sci & Technol NUST, Sch Civil & Environm Engn SCEE, Sect H-12, Islamabad, Pakistan
[2] King Fahd Univ Petr & Minerals KFUPM, Civil & Environm Engn Dept, Dhahran 31261, Saudi Arabia
[3] King Fahd Univ Petr & Minerals KFUPM, Interdisciplinary Res Ctr Construct & Bldg Mat, Dhahran 31261, Saudi Arabia
关键词
Steel fibers; Fiber-reinforced concrete; High-strength concrete; Properties degradation; Mechanical performance; RC BEAMS; FLEXURAL BEHAVIOR; MECHANICAL-PROPERTIES; SHEAR BEHAVIOR; ASPECT RATIO; PERFORMANCE;
D O I
10.1007/s13369-023-08171-3
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
High-strength concrete is extensively used in the construction industry due to its higher stiffness and modulus, but it is inherently brittle. In order to reduce its brittle behavior, steel fibers are being used to increase their application in the construction industry. In this experimental study, a fixed volume fraction (V-f = 1.5%) of steel fiber was used in the concrete, whereas the type of confinement (steel tube and carbon fiber-reinforced polymer CFRP strip) was varied. Five high-strength concrete beams with and without steel fibers strengthened with different confinements (steel sheet and CFRP) were cast and evaluated for flexural performance. (Four-point loading tests were done here.) Conventional steel was used for reinforcing concrete as it has the same lateral and longitudinal strengths. The high initial cost of steel tubes is compensated by eliminating the cost of formwork required for casting regular concrete members. For conventional reinforcement, a balanced steel ratio was used. All specimens were tested under monotonic loading. The tested structural elements showed good plasticity and increased flexural capacity. The improved ductility and energy absorption capacity of the members indicate their promising use in building structures.
引用
收藏
页码:4567 / 4580
页数:14
相关论文
共 50 条
  • [31] Bending Test of Rectangular High-Strength Steel Fiber-Reinforced Concrete-Filled Steel Tubular Beams with Stiffeners
    Liu, Shiming
    Ji, Zhaoyang
    Li, Shangyu
    Li, Xiaoke
    Liu, Yongjian
    Zhao, Shunbo
    BUILDINGS, 2024, 14 (11)
  • [32] Flexural behavior of partially fiber-reinforced high-strength concrete beams reinforced with FRP bars
    Zhu, Haitang
    Cheng, Shengzhao
    Gao, Danying
    Neaz, Sheikh M.
    Li, Chuanchuan
    CONSTRUCTION AND BUILDING MATERIALS, 2018, 161 : 587 - 597
  • [33] Hooking Effect on Flexural Strength and Toughness of Steel Fiber-Reinforced Concrete Beams
    Chu, S. H.
    Sneed, L.
    Yoo, D. -Y.
    Kwan, A. K. H.
    ACI MATERIALS JOURNAL, 2024, 121 (06) : 15 - 26
  • [34] Fiber reinforced high-strength concrete beams in shear
    Noghabai, K
    Olofsson, T
    Gustafsson, J
    HIGH STRENGTH CONCRETE, PROCEEDINGS, 1999, : 480 - 493
  • [35] Strength and ductility of fiber-reinforced high-strength concrete columns
    Foster, SJ
    Attard, MM
    JOURNAL OF STRUCTURAL ENGINEERING-ASCE, 2001, 127 (01): : 28 - 34
  • [36] Shear Strength of Composite Beams with Steel Fiber-Reinforced Concrete
    Kim, Chul-Goo
    Park, Hong-Gun
    Hong, Geon-Ho
    Kang, Su-Min
    ACI STRUCTURAL JOURNAL, 2019, 116 (06) : 5 - 16
  • [37] PROPERTIES OF FIBER-REINFORCED HIGH-STRENGTH SEMILIGHTWEIGHT CONCRETE
    BALAGURU, P
    DIPSIA, MG
    ACI MATERIALS JOURNAL, 1993, 90 (05) : 399 - 405
  • [38] Predicting the Shear Strength of High-strength Steel Fiber Reinforced Concrete Beams without Stirrups
    Wang, Ziguo
    Sun, Yuyan
    Mao, Jianfeng
    PROGRESS IN INDUSTRIAL AND CIVIL ENGINEERING II, PTS 1-4, 2013, 405-408 : 2938 - +
  • [39] Size effect in normal- and high-strength amorphous metallic and steel fiber reinforced concrete beams
    Yoo, Doo-Yeol
    Banthia, Nemkumar
    Yang, Jun-Mo
    Yoon, Young-Soo
    CONSTRUCTION AND BUILDING MATERIALS, 2016, 121 : 676 - 685
  • [40] Rehabilitation and Strengthening of Damaged Reinforced Concrete Beams Using Carbon Fiber-Reinforced Polymer Laminates and High-Strength Concrete Integrating Recycled Tire Steel Fiber
    Alasmari, Hasan A.
    Sharaky, Ibrahim A.
    Elamary, Ahmed S.
    El-Zohairy, Ayman
    FIBERS, 2025, 13 (01)