Effect of Different Confinements on High-Strength Steel Fiber-Reinforced Concrete (SFRC) Beams

被引:1
|
作者
Hafeez, Hammad [1 ]
Ahmad, Waqas [1 ]
Usman, Muhammad [1 ]
Hanif, Asad [2 ,3 ]
机构
[1] Natl Univ Sci & Technol NUST, Sch Civil & Environm Engn SCEE, Sect H-12, Islamabad, Pakistan
[2] King Fahd Univ Petr & Minerals KFUPM, Civil & Environm Engn Dept, Dhahran 31261, Saudi Arabia
[3] King Fahd Univ Petr & Minerals KFUPM, Interdisciplinary Res Ctr Construct & Bldg Mat, Dhahran 31261, Saudi Arabia
关键词
Steel fibers; Fiber-reinforced concrete; High-strength concrete; Properties degradation; Mechanical performance; RC BEAMS; FLEXURAL BEHAVIOR; MECHANICAL-PROPERTIES; SHEAR BEHAVIOR; ASPECT RATIO; PERFORMANCE;
D O I
10.1007/s13369-023-08171-3
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
High-strength concrete is extensively used in the construction industry due to its higher stiffness and modulus, but it is inherently brittle. In order to reduce its brittle behavior, steel fibers are being used to increase their application in the construction industry. In this experimental study, a fixed volume fraction (V-f = 1.5%) of steel fiber was used in the concrete, whereas the type of confinement (steel tube and carbon fiber-reinforced polymer CFRP strip) was varied. Five high-strength concrete beams with and without steel fibers strengthened with different confinements (steel sheet and CFRP) were cast and evaluated for flexural performance. (Four-point loading tests were done here.) Conventional steel was used for reinforcing concrete as it has the same lateral and longitudinal strengths. The high initial cost of steel tubes is compensated by eliminating the cost of formwork required for casting regular concrete members. For conventional reinforcement, a balanced steel ratio was used. All specimens were tested under monotonic loading. The tested structural elements showed good plasticity and increased flexural capacity. The improved ductility and energy absorption capacity of the members indicate their promising use in building structures.
引用
收藏
页码:4567 / 4580
页数:14
相关论文
共 50 条
  • [21] Behavior of fiber-reinforced prestressed and reinforced high-strength concrete beams subjected to shear
    Padmarajaiah, SK
    Ramaswamy, A
    ACI STRUCTURAL JOURNAL, 2001, 98 (05) : 752 - 761
  • [22] Mechanical properties of steel fiber-reinforced, high-strength, lightweight concrete
    Gao, JM
    Sun, W
    Morino, K
    CEMENT & CONCRETE COMPOSITES, 1997, 19 (04): : 307 - 313
  • [23] Mechanical properties of normal to high-strength steel fiber-reinforced concrete
    Khaloo, AR
    Kim, N
    CEMENT CONCRETE AND AGGREGATES, 1996, 18 (02): : 92 - 97
  • [24] Strain rate effect on the mesoscopic modeling of high-strength steel fiber-reinforced concrete
    Mehrpay, S.
    Jalali, R. S.
    SCIENTIA IRANICA, 2017, 24 (02) : 512 - 525
  • [25] Assessment of statistical variations in impact resistance of high-strength concrete and high-strength steel fiber-reinforced concrete
    Song, PS
    Wu, JC
    Hwang, S
    Sheu, BC
    CEMENT AND CONCRETE RESEARCH, 2005, 35 (02) : 393 - 399
  • [26] Flexural Behavior of High-Strength Steel and Ultra-High-Performance Fiber-Reinforced Concrete Composite Beams
    Xia, Jun
    BUILDINGS, 2024, 14 (01)
  • [27] Behavior of high-strength fiber-reinforced concrete beams under cyclic loading
    Daniel, L
    Loukili, A
    ACI STRUCTURAL JOURNAL, 2002, 99 (03) : 248 - 256
  • [28] Shear behavior of steel fiber high-strength reinforced concrete continuous beams
    Ebeido, Tarek I.
    Allam, Said M.
    AEJ - Alexandria Engineering Journal, 2002, 41 (03): : 485 - 497
  • [29] Shear behavior of high-strength concrete beams reinforced with carbon fiber-reinforced polymer bars
    Moussa, Amr M. A.
    Said, Hemdan O. A.
    Khodary, Farag
    Hassanean, Yahia A.
    ENGINEERING STRUCTURES, 2025, 325
  • [30] Shear Behavior of Steel Fiber Reinforced High-Strength Concrete Deep Beams
    Ma, Yudong
    Ma, Kaize
    Wei, Hui
    Liu, Boquan
    Huanan Ligong Daxue Xuebao/Journal of South China University of Technology (Natural Science), 2021, 49 (04): : 20 - 27