Interfacial engineering of ZnS passivating contacts for crystalline silicon solar cells achieving 20% efficiency

被引:7
|
作者
Wang, Yanhao [1 ,2 ]
Gu, Zeyu [1 ]
Li, Le [1 ]
Liu, Siyi [1 ]
Li, Jingjie [3 ]
Lu, Linfeng [1 ]
Li, Xiaodong [4 ]
Liu, Wenzhu [4 ]
Liu, Ronglin [5 ]
Chen, Jia [5 ]
Wang, Yichen [6 ]
Zhang, Shan-Ting [7 ]
Li, Dongdong [1 ,2 ,7 ]
机构
[1] Chinese Acad Sci, Shanghai Adv Res Inst, Interdisciplinary Res Ctr, 99 Haike Rd,Zhangjiang Hitech Pk, Shanghai 201210, Peoples R China
[2] Univ Chinese Acad Sci, Sch Integrated Circuits, 19 Yuquan Rd, Beijing 100049, Peoples R China
[3] Beijing Univ Technol, Fac Mat & Mfg, Beijing 100124, Peoples R China
[4] Chinese Acad Sci, Shanghai Inst Microsyst & Informat Technol, Res Ctr New Energy Technol, Shanghai 201800, Peoples R China
[5] Jolywood Taizhou Solar Technol Co Ltd, 6 Kaiyang Rd, Taizhou 225500, Jiangsu, Peoples R China
[6] Shanghai Weiyu Int Sch, Weiyu Rd, Shanghai 200231, Peoples R China
[7] Zhangjiang Lab, 100 Haike Rd,Zhangjiang Hitech Pk, Shanghai 201210, Peoples R China
基金
上海市自然科学基金;
关键词
Crystalline silicon solar cells; Dopant-free passivating contacts; Zinc sulfide; Surface passivation; Forming gas annealing; ELECTRON-SELECTIVE CONTACTS; DOPANT-FREE; HETEROJUNCTION; OXIDE; PHOTOVOLTAICS;
D O I
10.1016/j.mtener.2023.101336
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Despite the widespread use of metal oxides as electron selective contacts (ESCs) in dopant-free passivating contact crystalline silicon (c-Si) solar cells, their stability and performance improvements still encounter bottlenecks. Herein, we investigated the potential of zinc sulfide (ZnS) as ESC for n-type cSi (n-Si) solar cells. The performance of the ZnS-based dopant-free n-Si solar cells has been optimized by deploying the low-work-function Mg/Ag stack electrode and a SiOx passivation interlayer with forming gas annealing (FGA) treatment. An efficiency of 20.03% has been achieved for n-Si solar cells with SiOx(FGA)/ZnS/Mg/Ag contact, which is so far the highest efficiency reported for ZnS-based c-Si solar cells. Moreover, the device maintained & GE;98% of its initial efficiency after being stored in the air for 30 days, indicating the promise of long-term deployment. Our work highlights the great potential of using metal sulfides as high-performance and stable passivating contacts in dopant-free c-Si solar cells. & COPY; 2023 Elsevier Ltd. All rights reserved.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Role of polysilicon in poly-Si/SiOx passivating contacts for high-efficiency silicon solar cells
    Park, HyunJung
    Bae, Soohyun
    Park, Se Jin
    Hyun, Ji Yeon
    Lee, Chang Hyun
    Choi, Dongjin
    Kang, Dongkyun
    Han, Hyebin
    Kang, Yoonmook
    Lee, Hae-Seok
    Kim, Donghwan
    RSC ADVANCES, 2019, 9 (40) : 23261 - 23266
  • [32] Oxygen vacancy modulation of nanolayer TiOx to improve hole-selective passivating contacts for crystalline silicon solar cells
    Wang, Yanhao
    Guo, Zhaoyang
    Li, Yongchang
    Black, Lachlan E.
    MacDonald, Daniel H.
    Bao, Shaojuan
    Wang, Jilei
    Zhang, Yongzhe
    Zhang, Shan-Ting
    Li, Dongdong
    JOURNAL OF MATERIALS CHEMISTRY A, 2024, 12 (43) : 29833 - 29842
  • [33] Passivating Contacts for Silicon Solar Cells with 800 °C Stability Based on Tunnel-Oxide and Highly Crystalline Thin Silicon Layer
    Stuckelberger, J.
    Nogay, G.
    Wyss, P.
    Lehmann, M.
    Allebe, C.
    Debrot, F.
    Ledinsky, M.
    Fejfar, A.
    Despeisse, M.
    Haug, F. -J.
    Loper, P.
    Ballif, Christophe
    2016 IEEE 43RD PHOTOVOLTAIC SPECIALISTS CONFERENCE (PVSC), 2016, : 2518 - 2521
  • [34] Exploring hafnium oxide's potential for passivating contacts for silicon solar cells
    Wratten, A.
    Pain, S. L.
    Yadav, A.
    Khorani, E.
    Niewelt, T.
    Black, L.
    Bartholazzi, G.
    Walker, D.
    Grant, N. E.
    Murphy, J. D.
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2023, 259
  • [35] Fundamentals of and Recent Advances in Carrier Selective Passivating Contacts for Silicon Solar Cells
    Bisma Bilal
    Hakim Najeeb-ud-Din
    Journal of Electronic Materials, 2021, 50 : 3761 - 3772
  • [36] Quantum-well passivating contact at polysilicon/crystalline silicon interface for crystalline silicon solar cells
    Pham, Duy Phong
    Kim, Sungheon
    Vinh-Ai Dao
    Kim, Youngkuk
    Yi, Junsin
    CHEMICAL ENGINEERING JOURNAL, 2022, 449
  • [37] Fundamentals of and Recent Advances in Carrier Selective Passivating Contacts for Silicon Solar Cells
    Bilal, Bisma
    Najeeb-ud-Din, Hakim
    JOURNAL OF ELECTRONIC MATERIALS, 2021, 50 (07) : 3761 - 3772
  • [38] Temperature-dependent performance of silicon solar cells with polysilicon passivating contacts
    Le, Anh Huy Tuan
    Basnet, Rabin
    Yan, Di
    Chen, Wenhao
    Nandakumar, Naomi
    Duttagupta, Shubham
    Seif, Johannes P.
    Hameiri, Ziv
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2021, 225
  • [39] Thermal stability of amorphous silicon/silicon nitride stacks for passivating crystalline silicon solar cells
    Gatz, S.
    Plagwitz, H.
    Altermatt, P. P.
    Terheiden, B.
    Brendel, R.
    APPLIED PHYSICS LETTERS, 2008, 93 (17)
  • [40] Properties of mixed phase silicon-oxide-based passivating contacts for silicon solar cells
    Mack, I.
    Stuckelberger, J.
    Wyss, P.
    Nogay, G.
    Jeangros, Q.
    Horzel, J.
    Allebe, C.
    Despeisse, M.
    Haug, F. -J.
    Ingenito, A.
    Loeper, P.
    Ballif, C.
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2018, 181 : 9 - 14