Exploring hafnium oxide's potential for passivating contacts for silicon solar cells

被引:7
|
作者
Wratten, A. [1 ]
Pain, S. L. [1 ]
Yadav, A. [1 ]
Khorani, E. [1 ]
Niewelt, T. [1 ,2 ,3 ]
Black, L. [4 ]
Bartholazzi, G. [4 ]
Walker, D. [5 ]
Grant, N. E. [1 ]
Murphy, J. D. [1 ]
机构
[1] Univ Warwick, Sch Engn, Coventry CV4 7AL, England
[2] Fraunhofer Inst Solar Energy Syst ISE, Heidenhofstr 2, D-79110 Freiburg, Germany
[3] Univ Freiburg, Lab Photovolta Energy Convers, Emmy Noether Str 2, D-79110 Freiburg, Germany
[4] Australian Natl Univ, Sch Engn, Canberra 2600, Australia
[5] Univ Warwick, Dept Phys, Coventry CV4 7AL, England
基金
英国工程与自然科学研究理事会; 英国科学技术设施理事会;
关键词
Silicon; Passivation; Contact; HfO2; Atomic layer deposition; SURFACE PASSIVATION; CRYSTALLINE SILICON; FORCE MICROSCOPY; HFO2; TRANSITION; EXTRACTION; MECHANISM; LAYERS; FILMS;
D O I
10.1016/j.solmat.2023.112457
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
We investigate the potential of ultra-thin HfO2 films grown by atomic layer deposition for passivating contacts to silicon focusing on variations in film thickness and post-deposition annealing temperature. A peak in passivation quality - as assessed by carrier lifetime measurements - is reported for 2.2 nm thick films annealed at 475 degrees C, for which a surface recombination velocity <1 cm/s is determined. For films <2.2 nm thick, there is a marked decrease in passivation quality. X-ray diffraction highlights a change from crystallised monoclinic to amorphous HfO2 as film thickness decreases from 12 nm to 2.2 nm. Kelvin probe results indicate that as-deposited 2.2-12 nm films have similar effective work functions, although the work function of 1 nm films is considerably lower. Upon post-deposition annealing in vacuum, all films exhibit a reduction in effective work function at temperatures coincident with the onset of passivation in air-annealed samples. An initial investigation into the contact resistivity in a passivating contact structure utilizing HfO2 reveals a strong post-deposition annealing temperature dependence, with the lowest resistance achieved below 375 degrees C, followed by a decrease in performance as temperature increases towards the optimal temperature for passivation (475 degrees C). Limitations of the contact structure used are discussed.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Exploring silicon carbide- and silicon oxide-based layer stacks for passivating contacts to silicon solar cells
    Loper, P.
    Nogay, G.
    Wyss, P.
    Hyvl, M.
    Procel, P.
    Stuckelberger, J.
    Ingenito, A.
    Mack, I.
    Jeangros, Q.
    Ledinsky, M.
    Fejfar, A.
    Allebe, C.
    Horzel, J.
    Despeisse, M.
    Crupi, F.
    Haug, F-J.
    Ballif, C.
    2017 IEEE 44TH PHOTOVOLTAIC SPECIALIST CONFERENCE (PVSC), 2017, : 2073 - 2075
  • [2] Passivating contacts for crystalline silicon solar cells
    Allen, Thomas G.
    Bullock, James
    Yang, Xinbo
    Javey, Ali
    De Wolf, Stefaan
    NATURE ENERGY, 2019, 4 (11) : 914 - 928
  • [3] Passivating contacts for crystalline silicon solar cells
    Thomas G. Allen
    James Bullock
    Xinbo Yang
    Ali Javey
    Stefaan De Wolf
    Nature Energy, 2019, 4 : 914 - 928
  • [4] Properties of mixed phase silicon-oxide-based passivating contacts for silicon solar cells
    Mack, I.
    Stuckelberger, J.
    Wyss, P.
    Nogay, G.
    Jeangros, Q.
    Horzel, J.
    Allebe, C.
    Despeisse, M.
    Haug, F. -J.
    Ingenito, A.
    Loeper, P.
    Ballif, C.
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2018, 181 : 9 - 14
  • [5] Silicon solar cells with passivating contacts: Classification and performance
    Yan, Di
    Cuevas, Andres
    Stuckelberger, Josua
    Wang, Er-Chien
    Phang, Sieu Pheng
    Kho, Teng Choon
    Michel, Jesus Ibarra
    Macdonald, Daniel
    Bullock, James
    PROGRESS IN PHOTOVOLTAICS, 2023, 31 (04): : 310 - 326
  • [7] The impact of surface polarisation on the degradation of tunnel oxide passivating contacts in silicon solar cells
    Liu, Donghao
    Wright, Matthew
    Altermatt, Pietro P.
    Wright, Brendan
    Hamer, Phillip
    Bonilla, Ruy S.
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2025, 282
  • [8] Tunnel oxide passivating electron contacts for high-efficiency n-type silicon solar cells with amorphous silicon passivating hole contacts
    Park, HyunJung
    Lee, Youngseok
    Park, Se Jin
    Bae, Soohyun
    Kim, Sangho
    Oh, Donghyun
    Park, Jinjoo
    Kim, Youngkuk
    Guim, Hwanuk
    Kang, Yoonmook
    Lee, Hae-Seok
    Kim, Donghwan
    Yi, Junsin
    PROGRESS IN PHOTOVOLTAICS, 2019, 27 (12): : 1104 - 1114
  • [9] Progress in passivating selective contacts for heterojunction silicon solar cells
    Zhang, Yu
    Shi, Tingshu
    Duan, Leiping
    Hoex, Bram
    Tang, Zeguo
    NANO ENERGY, 2024, 131
  • [10] Concepts and Prospects of Passivating Contacts for Crystalline Silicon Solar Cells
    Melskens, Jimmy
    van de Loo, Bas W. H.
    Maceo, Bart
    Vos, Martijn F. J.
    Palmans, Jurgen
    Smit, Sjoerd
    Kessels, W. M. M.
    2015 IEEE 42ND PHOTOVOLTAIC SPECIALIST CONFERENCE (PVSC), 2015,