Meta-Reweighted Regularization for Unsupervised Domain Adaptation

被引:9
|
作者
Li, Shuang [1 ]
Ma, Wenxuan [1 ]
Zhang, Jinming [1 ]
Liu, Chi Harold [1 ]
Liang, Jian [2 ]
Wang, Guoren [1 ]
机构
[1] Beijing Inst Technol, Sch Comp Sci & Technol, Beijing 100811, Peoples R China
[2] Alibaba Grp, AI Int Dept, Beijing 100102, Peoples R China
基金
中国国家自然科学基金;
关键词
Adaptation models; Noise measurement; Training; Adversarial machine learning; Predictive models; Data models; Task analysis; Domain adaptation; meta learning; adversarial learning; self training; sample reweighting; FRAMEWORK;
D O I
10.1109/TKDE.2021.3114536
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Unsupervised domain adaptation (UDA) enables knowledge transfer from a labeled source domain to an unlabeled target domain by reducing the cross-domain distribution discrepancy, and the adversarial learning based paradigm has achieved remarkable success. On top of the derived domain-invariant feature representations, a promising stream of recent works seeks to further regularize the classification decision boundary via self-training to learn target adaptive classifier with pseudo-labeled target samples. However, since the pseudo labels are inevitably noisy, most of prior methods focus on manually designing elaborate target selection algorithms or optimization objectives to combat the negative effect caused by the incorrect pseudo labels. Different from them, in this paper, we propose a simple and powerful meta-learning based target-reweighting regularization algorithm, called MetaReg, which regularizes the model training by learning to reweight the noisy pseudo-labeled target samples. Specifically, MetaReg is motivated by the intuition that an ideal target classifier trained on correct target pseudo labels should make small classification errors on target-like source samples. Therefore, we explicitly define a meta reweighting problem that aims to find the optimal weights for different target pseudo labels by minimizing the classification loss on a designed validation set, a class-balanced set consisting of source samples that are most similar to target ones. Note that the optimization problem can be solved efficiently with a simplified approximation technique. As a result, the automatically learned optimal weights are utilized to reweight pseudo-labeled target samples, and regularize the model learning by target supervision with the learned different importance. Comprehensive experiments on several cross-domain image and text datasets verify that MetaReg could outperform the non-regularized UDA counterparts with state-of-the-art performance. Code is available at https://github.com/BIT-DA/MetaReg.
引用
收藏
页码:2781 / 2795
页数:15
相关论文
共 50 条
  • [31] Unsupervised Domain Adaptation by Domain Invariant Projection
    Baktashmotlagh, Mahsa
    Harandi, Mehrtash T.
    Lovell, Brian C.
    Salzmann, Mathieu
    2013 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2013, : 769 - 776
  • [32] Multiscale reweighted smoothing regularization in curvelet domain for hyperspectral image denoising
    Ma, Fei
    Liu, Siyu
    Huo, Shuai
    Yang, Feixia
    Xu, Guangxian
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2024, 45 (12) : 3937 - 3961
  • [33] Unsupervised Domain Adaptation for Medical Image Segmentation Using Transformer With Meta Attention
    Ji, Wen
    Chung, Albert C. S.
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2024, 43 (02) : 820 - 831
  • [34] MeTa Learning-Based Optimization of Unsupervised Domain Adaptation Deep Networks
    Lin, Hsiau-Wen
    Ho, Trang-Thi
    Tu, Ching-Ting
    Lin, Hwei-Jen
    Yu, Chen-Hsiang
    MATHEMATICS, 2025, 13 (02)
  • [35] A Domain Adaptation Regularization for Denoising Autoencoders
    Clinchant, Stephane
    Csurka, Gabriela
    Chidlovskii, Boris
    PROCEEDINGS OF THE 54TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2016), VOL 2, 2016, : 26 - 31
  • [36] A novel unsupervised domain adaptation based on deep neural network and manifold regularization for mechanical fault diagnosis
    Zhang, Zhongwei
    Chen, Huaihai
    Li, Shunming
    An, Zenghui
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2020, 31 (08)
  • [37] Unsupervised domain adaptation with adversarial distribution adaptation network
    Zhou, Qiang
    Zhou, Wen'an
    Wang, Shirui
    Xing, Ying
    NEURAL COMPUTING & APPLICATIONS, 2021, 33 (13): : 7709 - 7721
  • [38] Gradient Harmonization in Unsupervised Domain Adaptation
    Huang, Fuxiang
    Song, Suqi
    Zhang, Lei
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2024, 46 (12) : 10319 - 10336
  • [39] Unsupervised double weighted domain adaptation
    Jingyao Li
    Zhanshan Li
    Shuai Lü
    Neural Computing and Applications, 2021, 33 : 3545 - 3566
  • [40] Representation learning for unsupervised domain adaptation
    Xu Y.
    Yan H.
    Harbin Gongye Daxue Xuebao/Journal of Harbin Institute of Technology, 2021, 53 (02): : 40 - 46