Meta-Reweighted Regularization for Unsupervised Domain Adaptation

被引:9
|
作者
Li, Shuang [1 ]
Ma, Wenxuan [1 ]
Zhang, Jinming [1 ]
Liu, Chi Harold [1 ]
Liang, Jian [2 ]
Wang, Guoren [1 ]
机构
[1] Beijing Inst Technol, Sch Comp Sci & Technol, Beijing 100811, Peoples R China
[2] Alibaba Grp, AI Int Dept, Beijing 100102, Peoples R China
基金
中国国家自然科学基金;
关键词
Adaptation models; Noise measurement; Training; Adversarial machine learning; Predictive models; Data models; Task analysis; Domain adaptation; meta learning; adversarial learning; self training; sample reweighting; FRAMEWORK;
D O I
10.1109/TKDE.2021.3114536
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Unsupervised domain adaptation (UDA) enables knowledge transfer from a labeled source domain to an unlabeled target domain by reducing the cross-domain distribution discrepancy, and the adversarial learning based paradigm has achieved remarkable success. On top of the derived domain-invariant feature representations, a promising stream of recent works seeks to further regularize the classification decision boundary via self-training to learn target adaptive classifier with pseudo-labeled target samples. However, since the pseudo labels are inevitably noisy, most of prior methods focus on manually designing elaborate target selection algorithms or optimization objectives to combat the negative effect caused by the incorrect pseudo labels. Different from them, in this paper, we propose a simple and powerful meta-learning based target-reweighting regularization algorithm, called MetaReg, which regularizes the model training by learning to reweight the noisy pseudo-labeled target samples. Specifically, MetaReg is motivated by the intuition that an ideal target classifier trained on correct target pseudo labels should make small classification errors on target-like source samples. Therefore, we explicitly define a meta reweighting problem that aims to find the optimal weights for different target pseudo labels by minimizing the classification loss on a designed validation set, a class-balanced set consisting of source samples that are most similar to target ones. Note that the optimization problem can be solved efficiently with a simplified approximation technique. As a result, the automatically learned optimal weights are utilized to reweight pseudo-labeled target samples, and regularize the model learning by target supervision with the learned different importance. Comprehensive experiments on several cross-domain image and text datasets verify that MetaReg could outperform the non-regularized UDA counterparts with state-of-the-art performance. Code is available at https://github.com/BIT-DA/MetaReg.
引用
收藏
页码:2781 / 2795
页数:15
相关论文
共 50 条
  • [21] Unsupervised Domain Adaptation by Backpropagation
    Ganin, Yaroslav
    Lempitsky, Victor
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 37, 2015, 37 : 1180 - 1189
  • [22] Balanced Adaptation Regularization Based Transfer Learning for Unsupervised Cross-Domain Fault Diagnosis
    Hu, Qin
    Si, Xiaosheng
    Qin, Aisong
    Lv, Yunrong
    Liu, Mei
    IEEE SENSORS JOURNAL, 2022, 22 (12) : 12139 - 12151
  • [23] Unsupervised variational domain adaptation
    Li, Yundong
    Ge, Yizheng
    Lin, Chen
    Wang, Guan
    MACHINE LEARNING, 2025, 114 (03)
  • [24] Unsupervised domain adaptation with progressive adaptation of subspaces
    Li, Weikai
    Chen, Songcan
    PATTERN RECOGNITION, 2022, 132
  • [25] Unsupervised domain adaptation with progressive adaptation of subspaces
    Li, Weikai
    Chen, Songcan
    Pattern Recognition, 2022, 132
  • [26] Semantic adaptation network for unsupervised domain adaptation
    Zhou, Qiang
    Zhou, Wen'an
    Wang, Shirui
    NEUROCOMPUTING, 2021, 454 : 313 - 323
  • [27] Cluster adaptation networks for unsupervised domain adaptation
    Zhou, Qiang
    Zhou, Wen'an
    Wang, Shirui
    IMAGE AND VISION COMPUTING, 2021, 108
  • [28] Contrastive Adaptation Network for Unsupervised Domain Adaptation
    Kang, Guoliang
    Jiang, Lu
    Yang, Yi
    Hauptmann, Alexander G.
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 4888 - 4897
  • [29] MetaCorrection: Domain-aware Meta Loss Correction for Unsupervised Domain Adaptation in Semantic Segmentation
    Guo, Xiaoqing
    Yang, Chen
    Li, Baopu
    Yuan, Yixuan
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 3926 - 3935
  • [30] Bridging domain spaces for unsupervised domain adaptation
    Na, Jaemin
    Jung, Heechul
    Chang, Hyung Jin
    Hwang, Wonjun
    PATTERN RECOGNITION, 2025, 164