Predicting concrete strength through packing density using machine learning models

被引:21
|
作者
Pallapothu, Swamy Naga Ratna Giri [1 ]
Pancharathi, Rathish Kumar [1 ]
Janib, Rakesh [1 ]
机构
[1] Natl Inst Technol Warangal, Dept Civil Engn, Warangal 506004, Telangana, India
关键词
Packing density; Strength; Prediction; Machine learning; Performance measures; COMPRESSIVE STRENGTH;
D O I
10.1016/j.engappai.2023.107177
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This study presents an innovative approach to predict concrete compressive strength using particle packing theories through machine learning techniques. The existing challenge in concrete engineering lies in the accurate estimation of concrete strength, a critical factor in construction. The adoption of particle packing theories, which hold great promise for enhancing concrete performance, has been limited due to the complexity and timeconsuming nature of the required calculations. An approach encompassing particle packing models (JD Dewar Model, Compressible Packing Model, and Modified Toufar Model) with machine learning is the novelty of the work. These models optimize the packing density of aggregate proportions while minimizing the void ratio, essential for achieving desired compressive strength criteria. To train the model, a comprehensive dataset comprising 479 concrete mixtures, each associated with known compressive strength values relative to packing density, is utilized. A significant advancement in predicting concrete compressive strength is demonstrated by the results. The approach outperforms traditional empirical models, offering precise and reliable predictions based on packing density. Importantly, this innovation eliminates the need for time-consuming and costly trialand-error procedures in concrete mix design. The strong performance of various models in predicting concrete strength using particle packing theories is underscored by the study, with R<^>2 values ranging from 0.664 to 0.999. By combining concepts of particle packing theories and machine learning, a more efficient and reliable method for predicting concrete compressive strength is achieved. This innovation has the potential to revolutionize concrete mix design, leading to more durable and cost-effective construction practices.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Ensemble machine learning models for predicting concrete compressive strength incorporating various sand types
    Tipu, Rupesh Kumar
    Bansal, Shweta
    Batra, Vandna
    Patel, Gaurang A.
    MULTISCALE AND MULTIDISCIPLINARY MODELING EXPERIMENTS AND DESIGN, 2025, 8 (04)
  • [22] A Comprehensive Study on the Estimation of Concrete Compressive Strength Using Machine Learning Models
    Altunci, Yusuf Tahir
    BUILDINGS, 2024, 14 (12)
  • [23] Estimation of the compressive strength of ultrahigh performance concrete using machine learning models
    Kumar, Rakesh
    Kumar, Divesh Ranjan
    Wipulanusat, Warit
    Thongchom, Chanachai
    Samui, Pijush
    Rai, Baboo
    INTELLIGENT SYSTEMS WITH APPLICATIONS, 2025, 25
  • [24] Advanced Machine Learning Techniques for Predicting Concrete Compressive Strength
    Tak, Mohammad Saleh Nikoopayan
    Feng, Yanxiao
    Mahgoub, Mohamed
    INFRASTRUCTURES, 2025, 10 (02)
  • [25] Predicting the Compressive Strength and the Effective Porosity of Pervious Concrete Using Machine Learning Methods
    Ba-Anh Le
    Viet-Hung Vu
    Soo-Yeon Seo
    Bao-Viet Tran
    Tuan Nguyen-Sy
    Minh-Cuong Le
    Thai-Son Vu
    KSCE Journal of Civil Engineering, 2022, 26 : 4664 - 4679
  • [26] Feasibility analysis for predicting the compressive and tensile strength of concrete using machine learning algorithms
    Sami, Balahaha Hadi Ziyad
    Sami, Balahaha Fadi Ziyad
    Kumar, Pavitra
    Ahmed, Ali Najah
    Amieghemen, Goodnews E.
    Sherif, Muhammad M.
    El-Shafie, Ahmed
    CASE STUDIES IN CONSTRUCTION MATERIALS, 2023, 18
  • [27] Predicting the Compressive Strength of Environmentally Friendly Concrete Using Multiple Machine Learning Algorithms
    Yang, Yanhua
    Liu, Guiyong
    Zhang, Haihong
    Zhang, Yan
    Yang, Xiaolong
    BUILDINGS, 2024, 14 (01)
  • [28] Predicting and optimizing the concrete compressive strength using an explainable boosting machine learning model
    Vo T.-C.
    Nguyen T.-Q.
    Tran V.-L.
    Asian Journal of Civil Engineering, 2024, 25 (2) : 1365 - 1383
  • [29] Predicting compressive strength of lightweight foamed concrete using extreme learning machine model
    Yaseen, Zaher Mundher
    Deo, Ravinesh C.
    Hilal, Ameer
    Abd, Abbas M.
    Bueno, Laura Cornejo
    Salcedo-Sanz, Sancho
    Nehdi, Moncef L.
    ADVANCES IN ENGINEERING SOFTWARE, 2018, 115 : 112 - 125
  • [30] Predicting the compressive strength of concrete with fly ash admixture using machine learning algorithms
    Song, Hongwei
    Ahmad, Ayaz
    Farooq, Furqan
    Ostrowski, Krzysztof Adam
    Maslak, Mariusz
    Czarnecki, Slawomir
    Aslam, Fahid
    CONSTRUCTION AND BUILDING MATERIALS, 2021, 308