Dynamic multi-granularity spatial-temporal graph attention network for traffic forecasting

被引:2
|
作者
Sang, Wei [2 ]
Zhang, Huiliang [1 ]
Kang, Xianchang [2 ]
Nie, Ping [3 ]
Meng, Xin [3 ]
Boulet, Benoit [1 ]
Sun, Pei [2 ]
机构
[1] McGill Univ, 845 Rue Sherbrooke O, Montreal, PQ H3A 0G, Canada
[2] Tsinghua Univ, Beijing 10084, Peoples R China
[3] Peking Univ, Beijing 100091, Peoples R China
关键词
Spatial-temporal data; Traffic forecasting; Dynamic graph; FLOW;
D O I
10.1016/j.ins.2024.120230
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Traffic forecasting, as the cornerstone of the development of intelligent transportation systems, plays a crucial role in facilitating accurate control and management of urban traffic. By treating sensors as nodes in a road network, recent research on modeling complex spatial -temporal graph structures has achieved notable advancements in traffic forecasting. However, limited by the increasing number of sensors and recorded data points, most of the recent studies on spatial -temporal graph neural network (STGNN) research concentrate on aggregating short-term (e.g. recent one -hour) traffic history to predict future data. Furthermore, almost all previous STGNNs neglect to incorporate the cyclical patterns that appear in the traffic historical data. For example, the cyclical patterns of traffic on the same day or hour of each week can help improve the accuracy of future traffic predictions. In this paper, we propose a novel Dynamic Multi -Granularity Spatial -Temporal Graph Attention Network (DmgSTGAT) framework for traffic forecasting, which leverages multi -granularity spatial -temporal correlations across different timescales and variables to efficiently consider cyclical patterns in traffic data. We also design effective temporal encoding and transformer encoding layers to produce meaningful multi -granularity sensor -level, day -level, hour -level, and point -level representations. The multi -granularity spatialtemporal graph attention network can use the produced representations to extract useful but sparsely distributed patterns accurately, which also avoids the influence of extra noise from the long-term history. Experimental results on four real -world traffic datasets show that DmgSTGAT can achieve state-of-the-art performance with the help of multi -granularity cyclical patterns compared with various recent baselines.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] STGAT: Spatial-Temporal Graph Attention Networks for Traffic Flow Forecasting
    Kong, Xiangyuan
    Xing, Weiwei
    Wei, Xiang
    Bao, Peng
    Zhang, Jian
    Lu, Wei
    IEEE ACCESS, 2020, 8 : 134363 - 134372
  • [22] Adaptive spatial-temporal graph attention networks for traffic flow forecasting
    Kong, Xiangyuan
    Zhang, Jian
    Wei, Xiang
    Xing, Weiwei
    Lu, Wei
    APPLIED INTELLIGENCE, 2022, 52 (04) : 4300 - 4316
  • [23] Adaptive spatial-temporal graph attention networks for traffic flow forecasting
    Xiangyuan Kong
    Jian Zhang
    Xiang Wei
    Weiwei Xing
    Wei Lu
    Applied Intelligence, 2022, 52 : 4300 - 4316
  • [24] Forecasting traffic flow with spatial-temporal convolutional graph attention networks
    Zhang, Xiyue
    Xu, Yong
    Shao, Yizhen
    NEURAL COMPUTING & APPLICATIONS, 2022, 34 (18): : 15457 - 15479
  • [25] DSTAGNN: Dynamic Spatial-Temporal Aware Graph Neural Network for Traffic Flow Forecasting
    Lan, Shiyong
    Ma, Yitong
    Huang, Weikang
    Wang, Wenwu
    Yang, Hongyu
    Li, Piaoyang
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 162, 2022,
  • [26] Attention spatial-temporal graph neural network for traffic prediction
    Gan P.
    Nong L.
    Zhang W.
    Lin J.
    Wang J.
    Xi'an Dianzi Keji Daxue Xuebao/Journal of Xidian University, 2023, 50 (01): : 168 - 176
  • [27] Attention-based dynamic spatial-temporal graph convolutional networks for traffic speed forecasting
    Zhao, Jianli
    Liu, Zhongbo
    Sun, Qiuxia
    Li, Qing
    Jia, Xiuyan
    Zhang, Rumeng
    EXPERT SYSTEMS WITH APPLICATIONS, 2022, 204
  • [28] Graph Attention Network With Spatial-Temporal Clustering for Traffic Flow Forecasting in Intelligent Transportation System
    Chen, Yan
    Shu, Tian
    Zhou, Xiaokang
    Zheng, Xuzhe
    Kawai, Akira
    Fueda, Kaoru
    Yan, Zheng
    Liang, Wei
    Wang, Kevin I-Kai
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2023, 24 (08) : 8727 - 8737
  • [29] Multi-Attention Based Spatial-Temporal Graph Convolution Networks for Traffic Flow Forecasting
    Hu, Jun
    Chen, Liyin
    2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
  • [30] A Spatial-Temporal Graph Attention Network for Multi-intersection Traffic Light Control
    He, Liu
    Li, Qing'an
    Wu, Libing
    Wang, Min
    Li, Jianxin
    Wu, Dan
    2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,