Attention-based dynamic spatial-temporal graph convolutional networks for traffic speed forecasting

被引:27
|
作者
Zhao, Jianli [1 ]
Liu, Zhongbo [1 ]
Sun, Qiuxia [2 ]
Li, Qing [2 ]
Jia, Xiuyan [2 ]
Zhang, Rumeng [1 ]
机构
[1] Shandong Univ Sci & Technol, Coll Comp Sci & Engn, Qingdao, Peoples R China
[2] Shandong Univ Sci & Technol, Coll Math & Syst Sci, Qingdao, Peoples R China
关键词
Traffic speed forecast; GCN; Dynamic spatial-temporal correlations; Attention mechanism; TIME; FLOW; REGRESSION; MODEL;
D O I
10.1016/j.eswa.2022.117511
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In recent years, spatial-temporal graph modeling based on graph convolutional neural networks (GCN) has become an effective method for mining spatial-temporal dependencies in traffic forecasting research. However, existing studies lack the capability of dynamic spatial-temporal modeling of traffic speeds. Furthermore, longterm forecasting is difficult because of the diversity of traffic conditions. In addition, traditional studies capture only the features of fixed graph structures, which do not reflect real spatial dependence. To address these challenges, this study proposes a novel attention-based dynamic spatial-temporal graph convolutional network (ADSTGCN) model. ADSTGCN mainly consists of multiple dynamic spatial-temporal blocks, each of which contains three modules: 1) a dynamic adjustment module to model the dynamic spatial-temporal correlations of traffic speed, 2) a gated dilated convolution module to mine long-term dependencies, and 3) a spatial convolution module to capture hidden spatial dependencies. Experiments on three public traffic datasets demonstrated the good performance of the model.
引用
下载
收藏
页数:10
相关论文
共 50 条
  • [1] Attention Based Spatial-Temporal Graph Convolutional Networks for Traffic Flow Forecasting
    Guo, Shengnan
    Lin, Youfang
    Feng, Ning
    Song, Chao
    Wan, Huaiyu
    THIRTY-THIRD AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FIRST INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / NINTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2019, : 922 - 929
  • [2] Forecasting traffic flow with spatial-temporal convolutional graph attention networks
    Zhang, Xiyue
    Xu, Yong
    Shao, Yizhen
    NEURAL COMPUTING & APPLICATIONS, 2022, 34 (18): : 15457 - 15479
  • [3] Dynamic Spatial-Temporal Graph Convolutional Neural Networks for Traffic Forecasting
    Diao, Zulong
    Wang, Xin
    Zhang, Dafang
    Liu, Yingru
    Xie, Kun
    He, Shaoyao
    THIRTY-THIRD AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FIRST INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / NINTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2019, : 890 - 897
  • [4] Attention-based spatial-temporal graph transformer for traffic flow forecasting
    Qingyong Zhang
    Wanfeng Chang
    Changwu Li
    Conghui Yin
    Yixin Su
    Peng Xiao
    Neural Computing and Applications, 2023, 35 : 21827 - 21839
  • [5] Attention-based spatial-temporal graph transformer for traffic flow forecasting
    Zhang, Qingyong
    Chang, Wanfeng
    Li, Changwu
    Yin, Conghui
    Su, Yixin
    Xiao, Peng
    NEURAL COMPUTING & APPLICATIONS, 2023, 35 (29): : 21827 - 21839
  • [6] Spatial-Temporal Convolutional Graph Attention Networks for Citywide Traffic Flow Forecasting
    Zhang, Xiyue
    Huang, Chao
    Xu, Yong
    Xia, Lianghao
    CIKM '20: PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, 2020, : 1853 - 1862
  • [7] Attention-based spatial-temporal adaptive dual-graph convolutional network for traffic flow forecasting
    Xia, Dawen
    Shen, Bingqi
    Geng, Jian
    Hu, Yang
    Li, Yantao
    Li, Huaqing
    NEURAL COMPUTING & APPLICATIONS, 2023, 35 (23): : 17217 - 17231
  • [8] Dynamic spatial-temporal graph convolutional recurrent networks for traffic flow forecasting
    Xia, Zhichao
    Zhang, Yong
    Yang, Jielong
    Xie, Linbo
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 240
  • [9] Spatial-temporal correlation graph convolutional networks for traffic forecasting
    Huang, Ru
    Chen, Zijian
    Zhai, Guangtao
    He, Jianhua
    Chu, Xiaoli
    IET INTELLIGENT TRANSPORT SYSTEMS, 2023, 17 (07) : 1380 - 1394
  • [10] Channel attention-based spatial-temporal graph neural networks for traffic prediction
    Wang, Bin
    Gao, Fanghong
    Tong, Le
    Zhang, Qian
    Zhu, Sulei
    DATA TECHNOLOGIES AND APPLICATIONS, 2023, 58 (01) : 81 - 94