Attention-based dynamic spatial-temporal graph convolutional networks for traffic speed forecasting

被引:27
|
作者
Zhao, Jianli [1 ]
Liu, Zhongbo [1 ]
Sun, Qiuxia [2 ]
Li, Qing [2 ]
Jia, Xiuyan [2 ]
Zhang, Rumeng [1 ]
机构
[1] Shandong Univ Sci & Technol, Coll Comp Sci & Engn, Qingdao, Peoples R China
[2] Shandong Univ Sci & Technol, Coll Math & Syst Sci, Qingdao, Peoples R China
关键词
Traffic speed forecast; GCN; Dynamic spatial-temporal correlations; Attention mechanism; TIME; FLOW; REGRESSION; MODEL;
D O I
10.1016/j.eswa.2022.117511
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In recent years, spatial-temporal graph modeling based on graph convolutional neural networks (GCN) has become an effective method for mining spatial-temporal dependencies in traffic forecasting research. However, existing studies lack the capability of dynamic spatial-temporal modeling of traffic speeds. Furthermore, longterm forecasting is difficult because of the diversity of traffic conditions. In addition, traditional studies capture only the features of fixed graph structures, which do not reflect real spatial dependence. To address these challenges, this study proposes a novel attention-based dynamic spatial-temporal graph convolutional network (ADSTGCN) model. ADSTGCN mainly consists of multiple dynamic spatial-temporal blocks, each of which contains three modules: 1) a dynamic adjustment module to model the dynamic spatial-temporal correlations of traffic speed, 2) a gated dilated convolution module to mine long-term dependencies, and 3) a spatial convolution module to capture hidden spatial dependencies. Experiments on three public traffic datasets demonstrated the good performance of the model.
引用
下载
收藏
页数:10
相关论文
共 50 条
  • [31] Attention-based spatial–temporal adaptive dual-graph convolutional network for traffic flow forecasting
    Dawen Xia
    Bingqi Shen
    Jian Geng
    Yang Hu
    Yantao Li
    Huaqing Li
    Neural Computing and Applications, 2023, 35 : 17217 - 17231
  • [32] Short-term traffic speed forecasting based on graph attention temporal convolutional networks
    Guo, Ge
    Yuan, Wei
    NEUROCOMPUTING, 2020, 410 : 387 - 393
  • [33] Spatial-Temporal Graph Attention Networks: A Deep Learning Approach for Traffic Forecasting
    Zhang, Chenhan
    Yu, James J. Q.
    Liu, Yi
    IEEE ACCESS, 2019, 7 : 166246 - 166256
  • [34] Multi-Attention Based Spatial-Temporal Graph Convolution Networks for Traffic Flow Forecasting
    Hu, Jun
    Chen, Liyin
    2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
  • [35] An Attention-based Approach for Traffic Conditions Forecasting Considering Spatial-Temporal Features
    Tao, Lu
    Gu, Yuanli
    Lu, Wenqi
    Rui, Xiaoping
    Zhou, Tian
    Ding, Ying
    2020 IEEE 5TH INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION ENGINEERING (IEEE ICITE 2020), 2020, : 117 - 122
  • [36] Traffic Speed Prediction Based on Spatial-Temporal Dynamic and Static Graph Convolutional Recurrent Network
    Wenxi, Y.A.N.G.
    Ziling, W.A.N.G.
    Tao, C.U.I.
    Yudong, L.U.
    Zhijian, Q.U.
    International Journal of Advanced Computer Science and Applications, 2024, 15 (12): : 518 - 529
  • [37] Attention-based spatial-temporal multi-graph convolutional networks for casualty prediction of terrorist attacks
    Hou, Zhiwen
    Zhou, Yuchen
    Wu, Xiaowei
    Bu, Fanliang
    COMPLEX & INTELLIGENT SYSTEMS, 2023, 9 (06) : 6307 - 6328
  • [38] Spatial-Temporal Bipartite Graph Attention Network for Traffic Forecasting
    Lakma, Dimuthu
    Perera, Kushani
    Borovica-Gajic, Renata
    Karunasekera, Shanika
    ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PT II, PAKDD 2024, 2024, 14646 : 68 - 80
  • [39] Multi-Hierarchical Spatial-Temporal Graph Convolutional Networks for Traffic Flow Forecasting
    Li, Zilong
    Ren, Qianqian
    Chen, Long
    Sui, Xiaohong
    Li, Jinbao
    2022 26TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2022, : 4913 - 4919
  • [40] Efficient Mobile Cellular Traffic Forecasting using Spatial-Temporal Graph Attention Networks
    Mortazavi, SeyedMohammad
    Sousa, Elvino
    2023 IEEE 34TH ANNUAL INTERNATIONAL SYMPOSIUM ON PERSONAL, INDOOR AND MOBILE RADIO COMMUNICATIONS, PIMRC, 2023,