Dynamic multi-granularity spatial-temporal graph attention network for traffic forecasting

被引:2
|
作者
Sang, Wei [2 ]
Zhang, Huiliang [1 ]
Kang, Xianchang [2 ]
Nie, Ping [3 ]
Meng, Xin [3 ]
Boulet, Benoit [1 ]
Sun, Pei [2 ]
机构
[1] McGill Univ, 845 Rue Sherbrooke O, Montreal, PQ H3A 0G, Canada
[2] Tsinghua Univ, Beijing 10084, Peoples R China
[3] Peking Univ, Beijing 100091, Peoples R China
关键词
Spatial-temporal data; Traffic forecasting; Dynamic graph; FLOW;
D O I
10.1016/j.ins.2024.120230
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Traffic forecasting, as the cornerstone of the development of intelligent transportation systems, plays a crucial role in facilitating accurate control and management of urban traffic. By treating sensors as nodes in a road network, recent research on modeling complex spatial -temporal graph structures has achieved notable advancements in traffic forecasting. However, limited by the increasing number of sensors and recorded data points, most of the recent studies on spatial -temporal graph neural network (STGNN) research concentrate on aggregating short-term (e.g. recent one -hour) traffic history to predict future data. Furthermore, almost all previous STGNNs neglect to incorporate the cyclical patterns that appear in the traffic historical data. For example, the cyclical patterns of traffic on the same day or hour of each week can help improve the accuracy of future traffic predictions. In this paper, we propose a novel Dynamic Multi -Granularity Spatial -Temporal Graph Attention Network (DmgSTGAT) framework for traffic forecasting, which leverages multi -granularity spatial -temporal correlations across different timescales and variables to efficiently consider cyclical patterns in traffic data. We also design effective temporal encoding and transformer encoding layers to produce meaningful multi -granularity sensor -level, day -level, hour -level, and point -level representations. The multi -granularity spatialtemporal graph attention network can use the produced representations to extract useful but sparsely distributed patterns accurately, which also avoids the influence of extra noise from the long-term history. Experimental results on four real -world traffic datasets show that DmgSTGAT can achieve state-of-the-art performance with the help of multi -granularity cyclical patterns compared with various recent baselines.
引用
下载
收藏
页数:15
相关论文
共 50 条
  • [1] Spatial-Temporal Bipartite Graph Attention Network for Traffic Forecasting
    Lakma, Dimuthu
    Perera, Kushani
    Borovica-Gajic, Renata
    Karunasekera, Shanika
    ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PT II, PAKDD 2024, 2024, 14646 : 68 - 80
  • [2] STAGCN: Spatial-Temporal Attention Graph Convolution Network for Traffic Forecasting
    Gu, Yafeng
    Deng, Li
    MATHEMATICS, 2022, 10 (09)
  • [3] Spatial-Temporal Graph Attention Model on Traffic Forecasting
    Zhang, Xinlan
    Zhang, Zhenguo
    Jin, Xiaofeng
    2020 13TH INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING, BIOMEDICAL ENGINEERING AND INFORMATICS (CISP-BMEI 2020), 2020, : 999 - 1003
  • [4] Decoupled Dynamic Spatial-Temporal Graph Neural Network for Traffic Forecasting
    Shao, Zezhi
    Zhang, Zhao
    Wei, Wei
    Wang, Fei
    Xu, Yongjun
    Cao, Xin
    Jensen, Christian S.
    PROCEEDINGS OF THE VLDB ENDOWMENT, 2022, 15 (11): : 2733 - 2746
  • [5] Dynamic Spatial-Temporal Graph Attention Graph Convolutional Network for Short-Term Traffic Flow Forecasting
    Tang, Cong
    Sun, Jingru
    Sun, Yichuang
    2020 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2020,
  • [6] Multi-Granularity Temporal Embedding Transformer Network for Traffic Flow Forecasting
    Huang, Jiani
    Yan, He
    Chen, Qixiu
    Liu, Yingan
    Sensors, 2024, 24 (24)
  • [7] Sampling Spatial-Temporal Attention Network for Traffic Forecasting
    Chen, Mao
    Xu, Yi
    Han, Liangzhe
    Sun, Leilei
    KNOWLEDGE SCIENCE, ENGINEERING AND MANAGEMENT, PT II, KSEM 2023, 2023, 14118 : 121 - 136
  • [8] Multi-granularity spatial temporal graph convolution network with consecutive attention for human motion prediction
    Ma, Jinli
    Zhang, Yumei
    Zhou, Hanghang
    Yang, Honghong
    Wu, Xiaojun
    APPLIED SOFT COMPUTING, 2024, 165
  • [9] Spatial-Temporal Dynamic Graph Differential Equation Network for Traffic Flow Forecasting
    Zhou, Junwei
    Qin, Xizhong
    Ding, Yuanfeng
    Ma, Haodong
    MATHEMATICS, 2023, 11 (13)
  • [10] Spatial-Temporal Dynamic Graph Convolutional Network With Interactive Learning for Traffic Forecasting
    Liu, Aoyu
    Zhang, Yaying
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2024, 25 (07) : 7645 - 7660