A Survey on Automatic Delineation of Radiotherapy Target Volume based on Machine Learning

被引:0
|
作者
Tao, Zhenchao [1 ,2 ,3 ]
Lyu, Shengfei [3 ]
机构
[1] Univ Sci & Technol China, Sch Data Sci, Hefei 230026, Anhui, Peoples R China
[2] Univ Sci & Technol China, Affiliated Hosp USTC 1, Sch Life Sci & Med, Hefei 230031, Peoples R China
[3] Nanyang Technol Univ, Singapore 639798, Singapore
关键词
Automatic delineation; Machine learning; Radiotherapy target volume; Medical image matching; Cancer; CONVOLUTIONAL NEURAL-NETWORK; ATLAS-BASED SEGMENTATION; IMAGE REGISTRATION; INTEROBSERVER VARIABILITY; RADIATION-THERAPY; AUTO-SEGMENTATION; BRAIN-STEM; CANCER; ORGANS; CT;
D O I
10.1162/dint_a_00204
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Radiotherapy is one of the main treatment methods for cancer, and the delineation of the radiotherapy target area is the basis and premise of precise treatment. Artificial intelligence technology represented by machine learning has done a lot of research in this area, improving the accuracy and efficiency of target delineation. This article will review the applications and research of machine learning in medical image matching, normal organ delineation and treatment target delineation according to the procudures of doctors to delineate the target volume, and give an outlook on the development prospects.
引用
收藏
页码:841 / 856
页数:16
相关论文
共 50 条
  • [31] COMPARISON BETWEEN CT-TARGET VOLUME DELINEATION AND DIFFERENT METHODS OF FDG-PET TARGET VOLUME DELINEATION FOR RADIOTHERAPY PLANNING OF NSCLC
    Rodari, M.
    Navarria, P.
    Lattuada, P.
    Scorsetti, M.
    Chiti, A.
    RADIOTHERAPY AND ONCOLOGY, 2010, 94 : S18 - S19
  • [32] Automatic Machine Learning for Target Recognition
    Blasch, Erik
    Majumder, Uttam K.
    Rovito, Todd
    Zulch, Peter
    Velten, Vince
    AUTOMATIC TARGET RECOGNITION XXIX, 2019, 10988
  • [33] Hierarchical and Adaptive Volume-growing Methods for the PET based Biologic Target Volume Delineation for Radiotherapy Treatment Planning
    Liu, Guocai
    Zhu, Suyu
    Wang, Yaonan
    Zhang, Jiutang
    Hu, Bingqiang
    ZhihaoYu
    Wu, Haiyan
    Yang, Weili
    2011 IEEE NUCLEAR SCIENCE SYMPOSIUM AND MEDICAL IMAGING CONFERENCE (NSS/MIC), 2011, : 4293 - 4295
  • [34] Automatic Differentiation in Machine Learning: a Survey
    Baydin, Atilim Gunes
    Pearlmutter, Barak A.
    Radul, Alexey Andreyevich
    Siskind, Jeffrey Mark
    JOURNAL OF MACHINE LEARNING RESEARCH, 2018, 18
  • [35] Automatic differentiation in machine learning: A survey
    Güneş Baydin, Atılım
    Pearlmutter, Barak A.
    Andreyevich Radul, Alexey
    Mark Siskind, Jeffrey
    Journal of Machine Learning Research, 2018, 18 : 1 - 43
  • [36] development of deep learning based delineation method of clinical target volume for lung tumor
    Ishihara, Shota
    Takemura, Akihiro
    Hayashi, Naoki
    Otobe, Katsuhiko
    Niwa, Fumihiko
    RADIOTHERAPY AND ONCOLOGY, 2024, 197 : S319 - S320
  • [37] Impact of the accuracy of automatic tumour functional volume delineation on radiotherapy treatment planning
    Le Maitre, Amandine
    Hatt, Mathieu
    Pradier, Olivier
    Cheze-le Rest, Catherine
    Visvikis, Dimitris
    PHYSICS IN MEDICINE AND BIOLOGY, 2012, 57 (17): : 5381 - 5397
  • [38] A Deep Learning-Driven Framework for Large Language Model-Assisted Automatic Target Volume Localization and Delineation in Spinal Metastases Stereotactic Body Radiotherapy
    Yang, Z.
    Kazemimoghadam, M.
    Wang, L.
    Szalkowski, G.
    Chuang, C. F. Y.
    Liu, L.
    Soltys, S.
    Pollom, E.
    Rahimy, E.
    Jiang, H.
    Park, D.
    Persad, A.
    Hori, Y.
    Fu, J.
    Romero, I. O.
    Zalavari, L.
    Chen, M.
    Lu, W.
    Gu, X.
    MEDICAL PHYSICS, 2024, 51 (09) : 6612 - 6613
  • [39] Deep learning based automatic internal gross target volume delineation from 4D-CT of hepatocellular carcinoma patients
    Yang, Zhen
    Yang, Xiaoyu
    Cao, Ying
    Shao, Qigang
    Tang, Du
    Peng, Zhao
    Di, Shuanhu
    Zhao, Yuqian
    Li, Shuzhou
    JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, 2024, 25 (01):
  • [40] Bayesian delineation framework of clinical target volumes for prostate cancer radiotherapy using an anatomical-features-based machine learning technique
    Ninomiya, K.
    Arimura, H.
    Sasahara, M.
    Hirose, T.
    Ohga, S.
    Umezu, Y.
    Honda, H.
    Sasaki, T.
    MEDICAL IMAGING 2018: IMAGE-GUIDED PROCEDURES, ROBOTIC INTERVENTIONS, AND MODELING, 2018, 10576