Analysing cerebrospinal fluid with explainable deep learning: From diagnostics to insights

被引:2
|
作者
Schweizer, Leonille [1 ,2 ,3 ,4 ,5 ]
Seegerer, Philipp [6 ,7 ]
Kim, Hee-yeong [8 ]
Saitenmacher, Rene [6 ]
Muench, Amos [2 ,3 ,4 ,5 ]
Barnick, Liane [2 ,3 ,4 ]
Osterloh, Anja [2 ,3 ,4 ]
Dittmayer, Carsten [2 ,3 ,4 ]
Jodicke, Ruben [2 ,3 ,4 ,5 ]
Pehl, Debora [9 ]
Reinhardt, Annekathrin [10 ]
Ruprecht, Klemens [3 ,4 ,11 ]
Stenzel, Werner [2 ,3 ,4 ]
Wefers, Annika K. [12 ]
Harter, Patrick N. [13 ,14 ,15 ]
Schueller, Ulrich [12 ,16 ,17 ]
Heppner, Frank L. [2 ,3 ,4 ,5 ,18 ,19 ]
Alber, Maximilian [3 ,4 ,7 ,20 ]
Mueller, Klaus-Robert [6 ,21 ,22 ,23 ]
Klauschen, Frederick [22 ,24 ,25 ]
机构
[1] Goethe Univ, Univ Hosp Frankfurt, Inst Neurol, Edinger Inst, Frankfurt, Germany
[2] Charite Univ Med Berlin, Dept Neuropathol, Berlin, Germany
[3] Humboldt Univ, Berlin, Germany
[4] Free Univ Berlin, Berlin, Germany
[5] German Canc Res Ctr, German Canc Consortium DKTK, Partner Site Berlin, Heidelberg, Germany
[6] Tech Univ Berlin, Dept Software Engn & Theoret Comp Sci, Machine Learning Grp, Berlin, Germany
[7] Aignostics GmbH, Berlin, Germany
[8] Robert Koch Inst, Syst Med Infect Dis, Berlin, Germany
[9] Vivantes Hosp Berlin, Dept Pathol, Berlin, Germany
[10] Univ Hosp Heidelberg, Dept Neuropathol, Heidelberg, Germany
[11] Charite Univ Med Berlin, Dept Neurol, Partner Site Munich, Berlin, Germany
[12] Univ Med Ctr Hamburg Eppendorf, Inst Neuropathol, Hamburg, Germany
[13] Goethe Univ, Neurol Inst, Edinger Inst, Frankfurt, Germany
[14] Goethe Univ, Frankfurt Canc Inst, Frankfurt, Germany
[15] German Canc Res Ctr, German Canc Consortium DKTK, Partner Site Frankfurt Mainz, Heidelberg, Germany
[16] Univ Med Ctr Hamburg Eppendorf, Dept Pediat Hematol & Oncol, Hamburg, Germany
[17] Res Inst Childrens Canc Ctr Hamburg, Hamburg, Germany
[18] NeuroCure, Cluster Excellence, Berlin, Germany
[19] German Ctr Neurodegenerat Dis DZNE Berlin, Berlin, Germany
[20] Charite Univ Med Berlin, Inst Pathol, Berlin, Germany
[21] Max Planck Inst Informat, Saarbrucken, Germany
[22] Berlin Inst Fdn Learning & Data BIFOLD, Berlin, Germany
[23] Korea Univ, Dept Artificial Intelligence, Seoul, South Korea
[24] German Canc Res Ctr, German Canc Consortium DKTK, Partner Site Munich, Heidelberg, Germany
[25] Ludwig Maximilians Univ Munchen, Inst Pathol, Munich, Germany
关键词
cell detection; cerebrospinal fluid; deep learning; explainable AI; heatmaps; MOLECULAR CLASSIFICATION; NEURAL-NETWORKS; EXPERIENCE;
D O I
10.1111/nan.12866
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
AimAnalysis of cerebrospinal fluid (CSF) is essential for diagnostic workup of patients with neurological diseases and includes differential cell typing. The current gold standard is based on microscopic examination by specialised technicians and neuropathologists, which is time-consuming, labour-intensive and subjective. MethodsWe, therefore, developed an image analysis approach based on expert annotations of 123,181 digitised CSF objects from 78 patients corresponding to 15 clinically relevant categories and trained a multiclass convolutional neural network (CNN). ResultsThe CNN classified the 15 categories with high accuracy (mean AUC 97.3%). By using explainable artificial intelligence (XAI), we demonstrate that the CNN identified meaningful cellular substructures in CSF cells recapitulating human pattern recognition. Based on the evaluation of 511 cells selected from 12 different CSF samples, we validated the CNN by comparing it with seven board-certified neuropathologists blinded for clinical information. Inter-rater agreement between the CNN and the ground truth was non-inferior (Krippendorff's alpha 0.79) compared with the agreement of seven human raters and the ground truth (mean Krippendorff's alpha 0.72, range 0.56-0.81). The CNN assigned the correct diagnostic label (inflammatory, haemorrhagic or neoplastic) in 10 out of 11 clinical samples, compared with 7-11 out of 11 by human raters. ConclusionsOur approach provides the basis to overcome current limitations in automated cell classification for routine diagnostics and demonstrates how a visual explanation framework can connect machine decision-making with cell properties and thus provide a novel versatile and quantitative method for investigating CSF manifestations of various neurological diseases.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Deep Learning in Analysing Paranasal Sinuses
    Ozbay, Serkan
    Tunc, Orhan
    ELEKTRONIKA IR ELEKTROTECHNIKA, 2022, 28 (03) : 65 - 70
  • [32] Analysing Adversarial Examples for Deep Learning
    Jung, Jason
    Akhtar, Naveed
    Hassan, Ghulam
    VISAPP: PROCEEDINGS OF THE 16TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER VISION, IMAGING AND COMPUTER GRAPHICS THEORY AND APPLICATIONS - VOL. 5: VISAPP, 2021, : 585 - 592
  • [33] Enhancing early Parkinson's disease detection through multimodal deep learning and explainable AI: insights from the PPMI database
    Dentamaro, Vincenzo
    Impedovo, Donato
    Musti, Luca
    Pirlo, Giuseppe
    Taurisano, Paolo
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [34] Inside the Brain: Cerebrospinal Fluid Insights in Meningitis
    Singh, Niharika
    CUREUS JOURNAL OF MEDICAL SCIENCE, 2024, 16 (08)
  • [35] Recent insights into a new hydrodynamics of the cerebrospinal fluid
    Bulat, Marin
    Klarica, Marijan
    BRAIN RESEARCH REVIEWS, 2011, 65 (02) : 99 - 112
  • [36] Explainable Machine Learning Models for Brain Diseases: Insights from a Systematic Review
    Mallma, Mirko Jerber Rodriguez
    Zuloaga-Rotta, Luis
    Borja-Rosales, Ruben
    Mallma, Josef Renato Rodriguez
    Vilca-Aguilar, Marcos
    Salas-Ojeda, Maria
    Mauricio, David
    NEUROLOGY INTERNATIONAL, 2024, 16 (06): : 1285 - 1307
  • [37] From Crystallized Adaptivity to Fluid Adaptivity in Deep Reinforcement Learning - Insights from Biological Systems on Adaptive Flexibility
    Schilling, Malte
    Ritter, Helge
    Ohl, Frank W.
    2019 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS (SMC), 2019, : 1472 - 1478
  • [38] Explainable Ransomware Detection with Deep Learning Techniques
    Giovanni Ciaramella
    Giacomo Iadarola
    Fabio Martinelli
    Francesco Mercaldo
    Antonella Santone
    Journal of Computer Virology and Hacking Techniques, 2024, 20 : 317 - 330
  • [39] Explainable deep learning for automatic rock classification
    Zheng, Dongyu
    Zhong, Hanting
    Camps-Valls, Gustau
    Cao, Zhisong
    Ma, Xiaogang
    Mills, Benjamin
    Hu, Xiumian
    Hou, Mingcai
    Ma, Chao
    Computers and Geosciences, 2024, 184
  • [40] Generative Counterfactual Introspection for Explainable Deep Learning
    Liu, Shusen
    Kailkhura, Bhavya
    Loveland, Donald
    Han, Yong
    2019 7TH IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (IEEE GLOBALSIP), 2019,