Analysing cerebrospinal fluid with explainable deep learning: From diagnostics to insights

被引:2
|
作者
Schweizer, Leonille [1 ,2 ,3 ,4 ,5 ]
Seegerer, Philipp [6 ,7 ]
Kim, Hee-yeong [8 ]
Saitenmacher, Rene [6 ]
Muench, Amos [2 ,3 ,4 ,5 ]
Barnick, Liane [2 ,3 ,4 ]
Osterloh, Anja [2 ,3 ,4 ]
Dittmayer, Carsten [2 ,3 ,4 ]
Jodicke, Ruben [2 ,3 ,4 ,5 ]
Pehl, Debora [9 ]
Reinhardt, Annekathrin [10 ]
Ruprecht, Klemens [3 ,4 ,11 ]
Stenzel, Werner [2 ,3 ,4 ]
Wefers, Annika K. [12 ]
Harter, Patrick N. [13 ,14 ,15 ]
Schueller, Ulrich [12 ,16 ,17 ]
Heppner, Frank L. [2 ,3 ,4 ,5 ,18 ,19 ]
Alber, Maximilian [3 ,4 ,7 ,20 ]
Mueller, Klaus-Robert [6 ,21 ,22 ,23 ]
Klauschen, Frederick [22 ,24 ,25 ]
机构
[1] Goethe Univ, Univ Hosp Frankfurt, Inst Neurol, Edinger Inst, Frankfurt, Germany
[2] Charite Univ Med Berlin, Dept Neuropathol, Berlin, Germany
[3] Humboldt Univ, Berlin, Germany
[4] Free Univ Berlin, Berlin, Germany
[5] German Canc Res Ctr, German Canc Consortium DKTK, Partner Site Berlin, Heidelberg, Germany
[6] Tech Univ Berlin, Dept Software Engn & Theoret Comp Sci, Machine Learning Grp, Berlin, Germany
[7] Aignostics GmbH, Berlin, Germany
[8] Robert Koch Inst, Syst Med Infect Dis, Berlin, Germany
[9] Vivantes Hosp Berlin, Dept Pathol, Berlin, Germany
[10] Univ Hosp Heidelberg, Dept Neuropathol, Heidelberg, Germany
[11] Charite Univ Med Berlin, Dept Neurol, Partner Site Munich, Berlin, Germany
[12] Univ Med Ctr Hamburg Eppendorf, Inst Neuropathol, Hamburg, Germany
[13] Goethe Univ, Neurol Inst, Edinger Inst, Frankfurt, Germany
[14] Goethe Univ, Frankfurt Canc Inst, Frankfurt, Germany
[15] German Canc Res Ctr, German Canc Consortium DKTK, Partner Site Frankfurt Mainz, Heidelberg, Germany
[16] Univ Med Ctr Hamburg Eppendorf, Dept Pediat Hematol & Oncol, Hamburg, Germany
[17] Res Inst Childrens Canc Ctr Hamburg, Hamburg, Germany
[18] NeuroCure, Cluster Excellence, Berlin, Germany
[19] German Ctr Neurodegenerat Dis DZNE Berlin, Berlin, Germany
[20] Charite Univ Med Berlin, Inst Pathol, Berlin, Germany
[21] Max Planck Inst Informat, Saarbrucken, Germany
[22] Berlin Inst Fdn Learning & Data BIFOLD, Berlin, Germany
[23] Korea Univ, Dept Artificial Intelligence, Seoul, South Korea
[24] German Canc Res Ctr, German Canc Consortium DKTK, Partner Site Munich, Heidelberg, Germany
[25] Ludwig Maximilians Univ Munchen, Inst Pathol, Munich, Germany
关键词
cell detection; cerebrospinal fluid; deep learning; explainable AI; heatmaps; MOLECULAR CLASSIFICATION; NEURAL-NETWORKS; EXPERIENCE;
D O I
10.1111/nan.12866
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
AimAnalysis of cerebrospinal fluid (CSF) is essential for diagnostic workup of patients with neurological diseases and includes differential cell typing. The current gold standard is based on microscopic examination by specialised technicians and neuropathologists, which is time-consuming, labour-intensive and subjective. MethodsWe, therefore, developed an image analysis approach based on expert annotations of 123,181 digitised CSF objects from 78 patients corresponding to 15 clinically relevant categories and trained a multiclass convolutional neural network (CNN). ResultsThe CNN classified the 15 categories with high accuracy (mean AUC 97.3%). By using explainable artificial intelligence (XAI), we demonstrate that the CNN identified meaningful cellular substructures in CSF cells recapitulating human pattern recognition. Based on the evaluation of 511 cells selected from 12 different CSF samples, we validated the CNN by comparing it with seven board-certified neuropathologists blinded for clinical information. Inter-rater agreement between the CNN and the ground truth was non-inferior (Krippendorff's alpha 0.79) compared with the agreement of seven human raters and the ground truth (mean Krippendorff's alpha 0.72, range 0.56-0.81). The CNN assigned the correct diagnostic label (inflammatory, haemorrhagic or neoplastic) in 10 out of 11 clinical samples, compared with 7-11 out of 11 by human raters. ConclusionsOur approach provides the basis to overcome current limitations in automated cell classification for routine diagnostics and demonstrates how a visual explanation framework can connect machine decision-making with cell properties and thus provide a novel versatile and quantitative method for investigating CSF manifestations of various neurological diseases.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Automated processing of eXplainable Artificial Intelligence outputs in deep learning models for fault diagnostics of large infrastructures
    Floreale, G.
    Baraldi, P.
    Zio, E.
    Fink, O.
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2025, 149
  • [22] Neurochemical approaches of cerebrospinal fluid diagnostics in neurodegenerative diseases
    Otto, Markus
    Lewczuk, Piotr
    Wiltfang, Jens
    METHODS, 2008, 44 (04) : 289 - 298
  • [23] Cerebrospinal fluid diagnostics in first-episode schizophrenia
    Kranaster, Laura
    Koethe, Dagmar
    Hoyer, Carolin
    Meyer-Lindenberg, Andreas
    Leweke, F. Markus
    EUROPEAN ARCHIVES OF PSYCHIATRY AND CLINICAL NEUROSCIENCE, 2011, 261 (07) : 529 - 530
  • [24] Cerebrospinal fluid diagnostics in first-episode schizophrenia
    Laura Kranaster
    Dagmar Koethe
    Carolin Hoyer
    Andreas Meyer-Lindenberg
    F. Markus Leweke
    European Archives of Psychiatry and Clinical Neuroscience, 2011, 261 : 529 - 530
  • [25] Remibrutinib Exposure in Cerebrospinal Fluid: Insights From a Study in Healthy Subjects
    Lefevre, Gilbert
    Tian, Xianbin
    Choudhury, Somesh
    Willi, Roman
    Kieseier, Bernd C.
    Liu, Lyric Yang
    Beecham, Robert
    Vormfelde, Stefan Viktor
    Tillmann, Hanns-Christian
    MULTIPLE SCLEROSIS JOURNAL, 2024, 30 (03) : 849 - 849
  • [26] Neuromodulation via the Cerebrospinal Fluid: Insights from Recent in Vitro Studies
    Bjorefeldt, Andreas
    Illes, Sebastian
    Zetterberg, Henrik
    Hanse, Eric
    FRONTIERS IN NEURAL CIRCUITS, 2018, 12
  • [27] Explainable Machine Learning for Scientific Insights and Discoveries
    Roscher, Ribana
    Bohn, Bastian
    Duarte, Marco F.
    Garcke, Jochen
    IEEE ACCESS, 2020, 8 : 42200 - 42216
  • [28] Explainable Artificial Intelligence in Medical Diagnostics: Insights into Alzheimer's Disease
    Nawaz, Ali
    Ahmad, Amir
    MACHINE LEARNING AND PRINCIPLES AND PRACTICE OF KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2023, PT IV, 2025, 2136 : 312 - 319
  • [29] Explainable deep learning in healthcare: A methodological survey from an attribution view
    Jin, Di
    Sergeeva, Elena
    Weng, Wei-Hung
    Chauhan, Geeticka
    Szolovits, Peter
    WIRES MECHANISMS OF DISEASE, 2022, 14 (03):
  • [30] Emotion Recognition from Facial Expression using Explainable Deep Learning
    Cesarelli, Mario
    Martinelli, Fabio
    Mercaldo, Francesco
    Santone, Antonella
    2022 IEEE INTL CONF ON DEPENDABLE, AUTONOMIC AND SECURE COMPUTING, INTL CONF ON PERVASIVE INTELLIGENCE AND COMPUTING, INTL CONF ON CLOUD AND BIG DATA COMPUTING, INTL CONF ON CYBER SCIENCE AND TECHNOLOGY CONGRESS (DASC/PICOM/CBDCOM/CYBERSCITECH), 2022, : 306 - 311