Analysing cerebrospinal fluid with explainable deep learning: From diagnostics to insights

被引:2
|
作者
Schweizer, Leonille [1 ,2 ,3 ,4 ,5 ]
Seegerer, Philipp [6 ,7 ]
Kim, Hee-yeong [8 ]
Saitenmacher, Rene [6 ]
Muench, Amos [2 ,3 ,4 ,5 ]
Barnick, Liane [2 ,3 ,4 ]
Osterloh, Anja [2 ,3 ,4 ]
Dittmayer, Carsten [2 ,3 ,4 ]
Jodicke, Ruben [2 ,3 ,4 ,5 ]
Pehl, Debora [9 ]
Reinhardt, Annekathrin [10 ]
Ruprecht, Klemens [3 ,4 ,11 ]
Stenzel, Werner [2 ,3 ,4 ]
Wefers, Annika K. [12 ]
Harter, Patrick N. [13 ,14 ,15 ]
Schueller, Ulrich [12 ,16 ,17 ]
Heppner, Frank L. [2 ,3 ,4 ,5 ,18 ,19 ]
Alber, Maximilian [3 ,4 ,7 ,20 ]
Mueller, Klaus-Robert [6 ,21 ,22 ,23 ]
Klauschen, Frederick [22 ,24 ,25 ]
机构
[1] Goethe Univ, Univ Hosp Frankfurt, Inst Neurol, Edinger Inst, Frankfurt, Germany
[2] Charite Univ Med Berlin, Dept Neuropathol, Berlin, Germany
[3] Humboldt Univ, Berlin, Germany
[4] Free Univ Berlin, Berlin, Germany
[5] German Canc Res Ctr, German Canc Consortium DKTK, Partner Site Berlin, Heidelberg, Germany
[6] Tech Univ Berlin, Dept Software Engn & Theoret Comp Sci, Machine Learning Grp, Berlin, Germany
[7] Aignostics GmbH, Berlin, Germany
[8] Robert Koch Inst, Syst Med Infect Dis, Berlin, Germany
[9] Vivantes Hosp Berlin, Dept Pathol, Berlin, Germany
[10] Univ Hosp Heidelberg, Dept Neuropathol, Heidelberg, Germany
[11] Charite Univ Med Berlin, Dept Neurol, Partner Site Munich, Berlin, Germany
[12] Univ Med Ctr Hamburg Eppendorf, Inst Neuropathol, Hamburg, Germany
[13] Goethe Univ, Neurol Inst, Edinger Inst, Frankfurt, Germany
[14] Goethe Univ, Frankfurt Canc Inst, Frankfurt, Germany
[15] German Canc Res Ctr, German Canc Consortium DKTK, Partner Site Frankfurt Mainz, Heidelberg, Germany
[16] Univ Med Ctr Hamburg Eppendorf, Dept Pediat Hematol & Oncol, Hamburg, Germany
[17] Res Inst Childrens Canc Ctr Hamburg, Hamburg, Germany
[18] NeuroCure, Cluster Excellence, Berlin, Germany
[19] German Ctr Neurodegenerat Dis DZNE Berlin, Berlin, Germany
[20] Charite Univ Med Berlin, Inst Pathol, Berlin, Germany
[21] Max Planck Inst Informat, Saarbrucken, Germany
[22] Berlin Inst Fdn Learning & Data BIFOLD, Berlin, Germany
[23] Korea Univ, Dept Artificial Intelligence, Seoul, South Korea
[24] German Canc Res Ctr, German Canc Consortium DKTK, Partner Site Munich, Heidelberg, Germany
[25] Ludwig Maximilians Univ Munchen, Inst Pathol, Munich, Germany
关键词
cell detection; cerebrospinal fluid; deep learning; explainable AI; heatmaps; MOLECULAR CLASSIFICATION; NEURAL-NETWORKS; EXPERIENCE;
D O I
10.1111/nan.12866
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
AimAnalysis of cerebrospinal fluid (CSF) is essential for diagnostic workup of patients with neurological diseases and includes differential cell typing. The current gold standard is based on microscopic examination by specialised technicians and neuropathologists, which is time-consuming, labour-intensive and subjective. MethodsWe, therefore, developed an image analysis approach based on expert annotations of 123,181 digitised CSF objects from 78 patients corresponding to 15 clinically relevant categories and trained a multiclass convolutional neural network (CNN). ResultsThe CNN classified the 15 categories with high accuracy (mean AUC 97.3%). By using explainable artificial intelligence (XAI), we demonstrate that the CNN identified meaningful cellular substructures in CSF cells recapitulating human pattern recognition. Based on the evaluation of 511 cells selected from 12 different CSF samples, we validated the CNN by comparing it with seven board-certified neuropathologists blinded for clinical information. Inter-rater agreement between the CNN and the ground truth was non-inferior (Krippendorff's alpha 0.79) compared with the agreement of seven human raters and the ground truth (mean Krippendorff's alpha 0.72, range 0.56-0.81). The CNN assigned the correct diagnostic label (inflammatory, haemorrhagic or neoplastic) in 10 out of 11 clinical samples, compared with 7-11 out of 11 by human raters. ConclusionsOur approach provides the basis to overcome current limitations in automated cell classification for routine diagnostics and demonstrates how a visual explanation framework can connect machine decision-making with cell properties and thus provide a novel versatile and quantitative method for investigating CSF manifestations of various neurological diseases.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Explainable Deep Learning for Analysing Brain Data
    Mueller, K-R
    2019 7TH INTERNATIONAL WINTER CONFERENCE ON BRAIN-COMPUTER INTERFACE (BCI), 2019, : 15 - 16
  • [2] Obtaining genetics insights from deep learning via explainable artificial intelligence
    Gherman Novakovsky
    Nick Dexter
    Maxwell W. Libbrecht
    Wyeth W. Wasserman
    Sara Mostafavi
    Nature Reviews Genetics, 2023, 24 : 125 - 137
  • [3] Obtaining genetics insights from deep learning via explainable artificial intelligence
    Novakovsky, Gherman
    Dexter, Nick
    Libbrecht, Maxwell W.
    Wasserman, Wyeth W.
    Mostafavi, Sara
    NATURE REVIEWS GENETICS, 2023, 24 (02) : 125 - 137
  • [4] Explainable deep learning for insights in El Nino and river flows
    Liu, Yumin
    Duffy, Kate
    Dy, Jennifer G.
    Ganguly, Auroop R.
    NATURE COMMUNICATIONS, 2023, 14 (01)
  • [5] Explainable deep learning for insights in El Niño and river flows
    Yumin Liu
    Kate Duffy
    Jennifer G. Dy
    Auroop R. Ganguly
    Nature Communications, 14
  • [6] Cerebrospinal fluid dynamics: disturbances and diagnostics
    Lavinio, A.
    Czosnyka, Z.
    Czosnyka, M.
    EUROPEAN JOURNAL OF ANAESTHESIOLOGY, 2008, 25 : 137 - 141
  • [7] STANDARDIZATION OF CEREBROSPINAL FLUID CELL DIAGNOSTICS
    WIECZOREK, V
    SCHMIDT, RM
    OLISCHER, RM
    DEUTSCHE GESUNDHEITSWESEN-ZEITSCHRIFT FUR KLINISCHE MEDIZIN, 1974, 29 (09): : 423 - 426
  • [8] Cerebrospinal Fluid Diagnostics for Neuroinfectious Diseases
    Spreer, A.
    Nau, R.
    FORTSCHRITTE DER NEUROLOGIE PSYCHIATRIE, 2015, 83 (02) : 109 - 122
  • [9] Article on the diagnostics of cerebrospinal fluid.
    Flockenhaus, M
    Fonseca, F
    DEUTSCHE MEDIZINISCHE WOCHENSCHRIFT, 1924, 50 : 1045 - 1046
  • [10] Cerebrospinal fluid diagnostics in multiple sclerosis
    Ruprecht, K.
    Tumani, H.
    NERVENARZT, 2016, 87 (12): : 1282 - 1287