Lidstone interpolation II. Two variables

被引:0
|
作者
Waldschmidt, Michel [1 ]
机构
[1] Sorbonne Univ, CNRS, Inst Math Jussieu Paris Rive Gauche IMJ PRG, F-75005 Paris, France
关键词
Lidstone polynomials; exponential type; analytic functions of several variables;
D O I
10.1142/S1793557123500729
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
According to Lidstone's interpolation theory, an entire function of a single variable of exponential type < pi is determined by it derivatives of even order at 0 and 1. In a previous paper, we gave a survey of this classical univariate theory. Here, we generalize it to two variables. Multivariate Lidstone interpolation will be the topic of a forthcoming paper.
引用
收藏
页数:22
相关论文
共 50 条
  • [41] POPOVICIU TYPE INEQUALITIES FOR HIGHER ORDER CONVEX FUNCTIONS VIA LIDSTONE INTERPOLATION
    Pecaric, Josip
    Praljak, Marjan
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2019, 22 (04): : 1243 - 1256
  • [42] Sharp error bounds for the derivatives of Lidstone-spline interpolation .2.
    Wong, PJY
    Agarwal, RP
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1996, 31 (03) : 61 - 90
  • [43] Lidstone–Euler interpolation and related high even order boundary value problem
    Francesco Aldo Costabile
    Maria Italia Gualtieri
    Anna Napoli
    Calcolo, 2021, 58
  • [44] More Accurate Jensen-Type Inequalities Based on the Lidstone Interpolation Formula
    Marija Bošnjak
    Mario Krnić
    Neda Lovričević
    Josip Pečarić
    Results in Mathematics, 2023, 78
  • [45] INTERPOLATION IN SEVERAL VARIABLES
    THACHER, HC
    MILNE, WE
    JOURNAL OF THE SOCIETY FOR INDUSTRIAL AND APPLIED MATHEMATICS, 1960, 8 (01): : 33 - 42
  • [46] Fourier coefficients of OGLE variables. II. RR Lyraes
    Morgan, SM
    Simet, M
    Bargenquast, S
    ACTA ASTRONOMICA, 1998, 48 (02): : 341 - 353
  • [47] Boundary values as Hamiltonian variables. II. Graded structures
    Soloviev, VO
    JOURNAL OF MATHEMATICAL PHYSICS, 2002, 43 (07) : 3636 - 3654
  • [48] Simultaneous Approximation of Functions of two Variables and their Derivatives by Bilinear Interpolation Splines
    Shabozov M.S.
    Zevarshoev U.N.
    Journal of Mathematical Sciences, 2020, 246 (6) : 800 - 811
  • [49] Polynomial Interpolation of the Function of Two Variables with Large Gradients in the Boundary Layers
    Zadorin, A. I.
    Zadorin, N. A.
    UCHENYE ZAPISKI KAZANSKOGO UNIVERSITETA-SERIYA FIZIKO-MATEMATICHESKIE NAUKI, 2016, 158 (01): : 40 - 50
  • [50] Orbital periods of cataclysmic variables identified by the SDSS -: II.: Measurements for six objects, including two eclipsing systems
    Southworth, John
    Marsh, T. R.
    Gansicke, B. T.
    Aungwerojwit, A.
    Hakala, P.
    de Martino, D.
    Lehto, H.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2007, 382 (03) : 1145 - 1157