Lidstone interpolation II. Two variables

被引:0
|
作者
Waldschmidt, Michel [1 ]
机构
[1] Sorbonne Univ, CNRS, Inst Math Jussieu Paris Rive Gauche IMJ PRG, F-75005 Paris, France
关键词
Lidstone polynomials; exponential type; analytic functions of several variables;
D O I
10.1142/S1793557123500729
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
According to Lidstone's interpolation theory, an entire function of a single variable of exponential type < pi is determined by it derivatives of even order at 0 and 1. In a previous paper, we gave a survey of this classical univariate theory. Here, we generalize it to two variables. Multivariate Lidstone interpolation will be the topic of a forthcoming paper.
引用
收藏
页数:22
相关论文
共 50 条
  • [31] Multiperiodicity in semiregular variables II.: Systematic amplitude variations
    Kiss, LL
    Szatmáry, K
    Szabó, G
    Mattei, JA
    ASTRONOMY & ASTROPHYSICS SUPPLEMENT SERIES, 2000, 145 (02): : 283 - 292
  • [32] Interpolation of a Function of Two Variables with Large Gradients in Boundary Layers
    Zadorin, A. I.
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2016, 37 (03) : 349 - 359
  • [33] A Numerical Study of the Xu Polynomial Interpolation Formula in Two Variables
    L. Bos
    M. Caliari
    S. De Marchi
    M. Vianello
    Computing, 2006, 76 : 311 - 324
  • [34] SITUATIONAL TESTS: II. LEADERLESS GROUP DISCUSSION VARIABLES
    Bass, Bernard M.
    EDUCATIONAL AND PSYCHOLOGICAL MEASUREMENT, 1951, 11 (02) : 196 - 207
  • [35] Southern and equatorial irregular variables - II. Optical spectroscopy
    Cieslinski, D
    Steiner, JE
    Jablonski, FJ
    ASTRONOMY & ASTROPHYSICS SUPPLEMENT SERIES, 1998, 131 (01): : 119 - 135
  • [36] An integrable Hamiltonian motion on a sphere: II. The separation of variables
    Gaffet, B
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (41): : 8341 - 8354
  • [37] A numerical study of the Xu polynomial interpolation formula in two variables
    Bos, L
    Caliari, M
    De Marchi, S
    Vianello, M
    COMPUTING, 2006, 76 (3-4) : 311 - 324
  • [38] Generalized Steffensen’s inequality by Lidstone interpolation and Montogomery’s identity
    Asfand Fahad
    Josip Pečarić
    Muhammad Imran Qureshi
    Journal of Inequalities and Applications, 2018
  • [39] Black box interpolation. II. The one variable derogatory case
    Mani, Vaidyanath
    Hartwig, Robert E.
    Linear Algebra and Its Applications, 1996, 249 (1-3): : 229 - 253
  • [40] More Accurate Jensen-Type Inequalities Based on the Lidstone Interpolation Formula
    Bosnjak, Marija
    Krnic, Mario
    Lovricevic, Neda
    Pecaric, Josip
    RESULTS IN MATHEMATICS, 2023, 78 (06)