Deep learning in image segmentation for mineral production: A review

被引:6
|
作者
Liu, Yang [1 ]
Wang, Xueyi [1 ]
Zhang, Zelin [2 ,3 ]
Deng, Fang [1 ]
机构
[1] Beijing Inst Technol, Sch Automat, State Key Lab Autonomous Intelligent Unmanned Syst, Beijing 100081, Peoples R China
[2] Beijing Inst Technol, Chongqing Innovat Ctr, Chongqing 401120, Peoples R China
[3] Wuhan Univ Sci & Technol, Key Lab Met Equipment & Control Technol, Wuhan 430081, Peoples R China
基金
中国国家自然科学基金;
关键词
Mineral image segmentation; Intelligent mineral industry; Deep learning; Encoder-decoders architecture; Application performance survey; MACHINE VISION SYSTEM; U-NET; EXTRACTION; NETWORKS; CLASSIFICATION; ALGORITHM; COAL;
D O I
10.1016/j.cageo.2023.105455
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Mineral image segmentation is widely used in mining, sorting, exploration, composition analysis, and other production works. The burgeoning field of deep learning provides preferred solutions for mineral image segmentation. We present a review of recent literature in this direction, covering the module components, encoderdecoders architecture, representative networks, mineral image datasets, performance metrics, and state-of-theart models. In the application performance survey, the review contents include mineral type, image type, image resolution, image data quantity, architecture selection, and encoder network construction, as well as summarizes the advantages of deep learning-based mineral image segmentation methods. We conducted smallscale experiments for the current mainstream architectures and visualize the segmentation results for performance comparison. We also investigated the application challenges and bottlenecks of deep learning-based methods, propose several innovative directions, and discuss promising future applications.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] Review of Image Augmentation Used in Deep Learning-Based Material Microscopic Image Segmentation
    Ma, Jingchao
    Hu, Chenfei
    Zhou, Peng
    Jin, Fangfang
    Wang, Xu
    Huang, Haiyou
    APPLIED SCIENCES-BASEL, 2023, 13 (11):
  • [22] Deep learning techniques in CT image reconstruction and segmentation: a systematic literature review
    Devi, Manju
    Singh, Sukhdip
    Tiwari, Shailendra
    INTERNATIONAL JOURNAL OF NANOTECHNOLOGY, 2023, 20 (5-10) : 790 - 828
  • [23] Embracing imperfect datasets: A review of deep learning solutions for medical image segmentation
    Tajbakhsh, Nima
    Jeyaseelan, Laura
    Li, Qian
    Chiang, Jeffrey
    Wu, Zhihao
    Ding, Xiaowei
    MEDICAL IMAGE ANALYSIS, 2020, 63 (63)
  • [24] Deep Learning for Visual Segmentation: A Review
    Sun, Jiaxing
    Li, Yujie
    Lu, Huimin
    Kamiya, Tohru
    Serikawa, Seiichi
    2020 IEEE 44TH ANNUAL COMPUTERS, SOFTWARE, AND APPLICATIONS CONFERENCE (COMPSAC 2020), 2020, : 1256 - 1260
  • [25] Deep learning for cell image segmentation and ranking
    Araujo, Flavio H. D.
    Silva, Romuere R. V.
    Ushizima, Daniela M.
    Rezende, Mariana T.
    Carneiro, Claudia M.
    Campos Bianchi, Andrea G.
    Medeiros, Fatima N. S.
    COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2019, 72 : 13 - 21
  • [26] Image Segmentation Based on Deep Learning Features
    Liao, Dingan
    Lu, Hu
    Xu, Xingpei
    Gao, Quansheng
    2019 ELEVENTH INTERNATIONAL CONFERENCE ON ADVANCED COMPUTATIONAL INTELLIGENCE (ICACI 2019), 2019, : 296 - 301
  • [27] Deep Dual Learning for Semantic Image Segmentation
    Luo, Ping
    Wang, Guangrun
    Lin, Liang
    Wang, Xiaogang
    2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, : 2737 - 2745
  • [28] Image Segmentation Using Deep Learning: A Survey
    Minaee, Shervin
    Boykov, Yuri Y.
    Porikli, Fatih
    Plaza, Antonio J.
    Kehtarnavaz, Nasser
    Terzopoulos, Demetri
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (07) : 3523 - 3542
  • [29] Image Segmentation of a Sewer Based on Deep Learning
    He, Min
    Zhao, Qinnan
    Gao, Huanhuan
    Zhang, Xinying
    Zhao, Qin
    SUSTAINABILITY, 2022, 14 (11)
  • [30] DEEP LEARNING ARCHITECTURES FOR MEDICAL IMAGE SEGMENTATION
    Subramaniam, Sudha
    Jayanthi, K. B.
    Rajasekaran, C.
    Kuchelar, Ramani
    2020 IEEE 33RD INTERNATIONAL SYMPOSIUM ON COMPUTER-BASED MEDICAL SYSTEMS(CBMS 2020), 2020, : 579 - 584