Adaptive estimation of quantum observables

被引:0
|
作者
Shlosberg, Ariel [1 ,2 ,3 ]
Jena, Andrew J. [4 ,5 ]
Mukhopadhyay, Priyanka [4 ,5 ]
Haase, Jan F. [4 ,6 ,7 ,8 ]
Leditzky, Felix [4 ,5 ,9 ,10 ,11 ]
Dellantonio, Luca [4 ,6 ,12 ]
机构
[1] Univ Colorado, JILA, Boulder, CO 80309 USA
[2] NIST, Boulder, CO 80309 USA
[3] Univ Colorado, Dept Phys, Boulder, CO 80309 USA
[4] Univ Waterloo, Inst Quantum Comp, Waterloo, ON N2L 3G1, Canada
[5] Univ Waterloo, Dept Combinator & Optimizat, Waterloo, ON N2L 3G1, Canada
[6] Univ Waterloo, Dept Phys & Astron, Waterloo, ON N2L 3G1, Canada
[7] Univ Ulm, Inst Theoret Phys, D-89069 Ulm, Germany
[8] Univ Ulm, IQST, D-89069 Ulm, Germany
[9] Univ Illinois, Dept Math, Urbana, IL 61801 USA
[10] Univ Illinois, IQUIST, Urbana, IL 61801 USA
[11] Perimeter Inst Theoret Phys, Waterloo, ON N2L 2Y5, Canada
[12] Univ Exeter, Dept Phys & Astron, Stocker Rd, Exeter EX4 4QL, England
来源
QUANTUM | 2023年 / 7卷
基金
英国工程与自然科学研究理事会; 加拿大自然科学与工程研究理事会;
关键词
CLIQUES;
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The accurate estimation of quantum observables is a critical task in science. With progress on the hardware, measur-ing a quantum system will become increas-ingly demanding, particularly for vari-ational protocols that require extensive sampling. Here, we introduce a mea-surement scheme that adaptively modi-fies the estimator based on previously ob-tained data. Our algorithm, which we call AEQuO, continuously monitors both the estimated average and the associated er-ror of the considered observable, and de-termines the next measurement step based on this information. We allow both for overlap and non-bitwise commutation re-lations in the subsets of Pauli operators that are simultaneously probed, thereby maximizing the amount of gathered infor-mation. AEQuO comes in two variants: a greedy bucket-filling algorithm with good performance for small problem instances, and a machine learning-based algorithm with more favorable scaling for larger in-stances. The measurement configuration determined by these subroutines is further post-processed in order to lower the er-ror on the estimator. We test our proto-col on chemistry Hamiltonians, for which AEQuO provides error estimates that im-prove on all state-of-the-art methods based on various grouping techniques or random-ized measurements, thus greatly lowering the toll of measurements in current and future quantum applications.
引用
收藏
页码:1 / 24
页数:24
相关论文
共 50 条
  • [41] Biomimetic Cloning of Quantum Observables
    Alvarez-Rodriguez, U.
    Sanz, M.
    Lamata, L.
    Solano, E.
    SCIENTIFIC REPORTS, 2014, 4
  • [42] Quantum Observables and Effect Algebras
    Dvurecenskij, Anatolij
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2018, 57 (03) : 637 - 651
  • [43] Universal Randomization of Quantum Observables
    Beneduci, Roberto
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2021, 60 (02) : 558 - 566
  • [44] Superphenomena for arbitrary quantum observables
    Jordan, Andrew N.
    Aharonov, Yakir
    Struppa, Daniele C.
    Colombo, Fabrizio
    Sabadini, Irene
    Shushi, Tomer
    Tollaksen, Jeff
    Howell, John C.
    Vamivakas, A. Nick
    PHYSICAL REVIEW A, 2024, 110 (01)
  • [45] Olson Order of Quantum Observables
    Anatolij Dvurečenskij
    International Journal of Theoretical Physics, 2016, 55 : 4896 - 4912
  • [46] Quantum Observables and Effect Algebras
    Anatolij Dvurečenskij
    International Journal of Theoretical Physics, 2018, 57 : 637 - 651
  • [47] QUANTUM OBSERVABLES IN CLASSICAL FRAMEWORKS
    BELTRAMETTI, EG
    BUGAJSKI, S
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1995, 34 (08) : 1221 - 1229
  • [48] Quantum Observables of Quantized Fluxes
    Sati, Hisham
    Schreiber, Urs
    ANNALES HENRI POINCARE, 2024,
  • [49] On Postselective Modifications of Quantum Observables
    A. S. Avanesov
    D. A. Kronberg
    Lobachevskii Journal of Mathematics, 2023, 44 : 1980 - 1989
  • [50] The noncommutative values of quantum observables
    Kong, Otto C. W.
    Liu, Wei-Yin
    CHINESE JOURNAL OF PHYSICS, 2021, 69 : 70 - 76