Adaptive estimation of quantum observables

被引:0
|
作者
Shlosberg, Ariel [1 ,2 ,3 ]
Jena, Andrew J. [4 ,5 ]
Mukhopadhyay, Priyanka [4 ,5 ]
Haase, Jan F. [4 ,6 ,7 ,8 ]
Leditzky, Felix [4 ,5 ,9 ,10 ,11 ]
Dellantonio, Luca [4 ,6 ,12 ]
机构
[1] Univ Colorado, JILA, Boulder, CO 80309 USA
[2] NIST, Boulder, CO 80309 USA
[3] Univ Colorado, Dept Phys, Boulder, CO 80309 USA
[4] Univ Waterloo, Inst Quantum Comp, Waterloo, ON N2L 3G1, Canada
[5] Univ Waterloo, Dept Combinator & Optimizat, Waterloo, ON N2L 3G1, Canada
[6] Univ Waterloo, Dept Phys & Astron, Waterloo, ON N2L 3G1, Canada
[7] Univ Ulm, Inst Theoret Phys, D-89069 Ulm, Germany
[8] Univ Ulm, IQST, D-89069 Ulm, Germany
[9] Univ Illinois, Dept Math, Urbana, IL 61801 USA
[10] Univ Illinois, IQUIST, Urbana, IL 61801 USA
[11] Perimeter Inst Theoret Phys, Waterloo, ON N2L 2Y5, Canada
[12] Univ Exeter, Dept Phys & Astron, Stocker Rd, Exeter EX4 4QL, England
来源
QUANTUM | 2023年 / 7卷
基金
英国工程与自然科学研究理事会; 加拿大自然科学与工程研究理事会;
关键词
CLIQUES;
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The accurate estimation of quantum observables is a critical task in science. With progress on the hardware, measur-ing a quantum system will become increas-ingly demanding, particularly for vari-ational protocols that require extensive sampling. Here, we introduce a mea-surement scheme that adaptively modi-fies the estimator based on previously ob-tained data. Our algorithm, which we call AEQuO, continuously monitors both the estimated average and the associated er-ror of the considered observable, and de-termines the next measurement step based on this information. We allow both for overlap and non-bitwise commutation re-lations in the subsets of Pauli operators that are simultaneously probed, thereby maximizing the amount of gathered infor-mation. AEQuO comes in two variants: a greedy bucket-filling algorithm with good performance for small problem instances, and a machine learning-based algorithm with more favorable scaling for larger in-stances. The measurement configuration determined by these subroutines is further post-processed in order to lower the er-ror on the estimator. We test our proto-col on chemistry Hamiltonians, for which AEQuO provides error estimates that im-prove on all state-of-the-art methods based on various grouping techniques or random-ized measurements, thus greatly lowering the toll of measurements in current and future quantum applications.
引用
收藏
页码:1 / 24
页数:24
相关论文
共 50 条
  • [21] Adaptive Bayesian quantum algorithm for phase estimation
    Smith, Joseph G.
    Barnes, Crispin H. W.
    Arvidsson-Shukur, David R. M.
    PHYSICAL REVIEW A, 2024, 109 (04)
  • [22] Experimental Demonstration of Adaptive Quantum State Estimation
    Okamoto, Ryo
    Iefuji, Minako
    Oyama, Satoshi
    Yamagata, Koichi
    Imai, Hiroshi
    Fujiwara, Akio
    Takeuchi, Shigeki
    PHYSICAL REVIEW LETTERS, 2012, 109 (13)
  • [23] Quantum Optical Adaptive Phase Estimation of Sidebands
    Wheatley, T. A.
    Huntington, E. H.
    Berry, D. W.
    Wiseman, H. M.
    Ralph, T. C.
    2008 CONFERENCE ON LASERS AND ELECTRO-OPTICS & QUANTUM ELECTRONICS AND LASER SCIENCE CONFERENCE, VOLS 1-9, 2008, : 3395 - +
  • [24] Probability Representation of Quantum Observables and Quantum States
    Vladimir N. Chernega
    Olga V. Man’ko
    Vladimir I. Man’ko
    Journal of Russian Laser Research, 2017, 38 : 324 - 333
  • [25] PARAMETER ESTIMATION WITH ERROR IN OBSERVABLES
    LUECKE, RH
    BRITT, HI
    AMERICAN JOURNAL OF PHYSICS, 1975, 43 (04) : 372 - 372
  • [26] Characterizing coherence with quantum observables
    Mandal, Suman
    Narozniak, Marek
    Radhakrishnan, Chandrashekar
    Jiao, Zhi-Qiang
    Jin, Xian-Min
    Byrnes, Tim
    PHYSICAL REVIEW RESEARCH, 2020, 2 (01):
  • [27] Spectral Resolutions and Quantum Observables
    Dvurecenskij, Anatolij
    Lachman, Dominik
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2020, 59 (08) : 2362 - 2383
  • [28] ALGEBRA OF OBSERVABLES AND QUANTUM LOGIC
    CIRELLI, R
    GALLONE, F
    ANNALES DE L INSTITUT HENRI POINCARE SECTION A PHYSIQUE THEORIQUE, 1973, 19 (04): : 297 - 331
  • [29] LOCAL OBSERVABLES IN QUANTUM THEORY
    HESTENES, D
    GURTLER, R
    AMERICAN JOURNAL OF PHYSICS, 1971, 39 (09) : 1028 - &
  • [30] ON THE PRODUCT OF NONCOMMUTING QUANTUM OBSERVABLES
    KAPUSCIK, E
    AMERICAN JOURNAL OF PHYSICS, 1988, 56 (03) : 230 - 231