Modelling Water Transport Limitations and Ionic Voltage Losses in Bipolar Membrane Water Electrolysis

被引:6
|
作者
Weiland, Oskar [1 ]
Trinke, Patrick [1 ]
Bensmann, Boris [1 ]
Hanke-Rauschenbach, Richard [1 ]
机构
[1] Leibniz Univ Hannover, Elect Energy Storage Syst, D-30167 Hannover, Germany
关键词
EXCHANGE; ANION; CONDUCTIVITY; CELL;
D O I
10.1149/1945-7111/acd02c
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
This work analyses the water transport and ionic losses in bipolar membranes at water electrolysis cells conditions. In common bipolar setups, water is split at the bipolar interface between the anion exchange membrane (AEM) and the cation exchange membrane (CEM). Accordingly, ions (protons and hydroxide ions) are transported to the electrodes, carrying the water out of both membranes via electro-osmotic drag. These outfluxes plus the required water amount for the splitting process have to be compensated by water diffusion towards the bipolar interface. The effect of water transport on the polarisation behaviour is additionally shown. Mayerhofer et al. [ACS Appl. Energy Mater., 3, 9635 (2020)] and Oener et al.[ACS Energy Lett., 6, 1 (2021)] decreased polarization losses and increased the current density range by reducing either the AEM or the CEM thickness, respectively. Our model validates these improvements by calculating the limiting current density caused by dehydration of the membranes. Further analysis shows that thinner AEM thicknesses decrease membrane voltage losses more than thinner CEM due to lower ionic conductivities and faster dehydration of AEMs. Thin CEMs on the other hand, are more efficient at increasing the limiting current density.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Proton exchange membrane water electrolysis at high current densities: Investigation of thermal limitations
    Moeckl, Maximilian
    Bernt, Maximilian
    Schroeter, Jonas
    Jossen, Andreas
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2020, 45 (03) : 1417 - 1428
  • [22] Water Crossover in Proton Exchange Membrane Water Electrolysis
    Friedrichs-Schucht, M.
    Hasche, F.
    Oezaslan, M.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2024, 171 (07)
  • [23] Water dissociation phenomena in a bipolar membrane——The configurations and theoretical voltage analysis
    徐铜文
    杨伟华
    何炳林
    Science in China(Series B), 1999, (06) : 589 - 598
  • [24] Water dissociation phenomena in a bipolar membrane - The configurations and theoretical voltage analysis
    Xu, TW
    Yang, WH
    He, BL
    SCIENCE IN CHINA SERIES B-CHEMISTRY, 1999, 42 (06): : 589 - 598
  • [25] A BIPOLAR CELL FOR ADVANCED ALKALINE WATER ELECTROLYSIS
    DIVISEK, J
    SCHMITZ, H
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 1982, 7 (09) : 703 - 710
  • [26] Ions and electric current in a bipolar water electrolysis
    Koch, Klemens
    CHEMKON, 2020, 27 (02) : 92 - 95
  • [27] Dimensionless approach of a polymer electrolyte membrane water electrolysis: Advanced analytical modelling
    Aubras, Farid
    Rhandi, Maha
    Deseure, Jonathan
    Kadjo, Amangoua Jean-Jacques
    Bessafi, Miloud
    Majasan, Jude
    Grondin-Perez, Brigitte
    Druart, Florence
    Chabriat, Jean-Pierre
    JOURNAL OF POWER SOURCES, 2021, 481
  • [28] Phosphomolybdic Acid-Bipolar Membrane: An Efficient and Reversible Coupling for Alkaline Water Electrolysis
    Wu, Weiming
    Wu, Xiao-Yuan
    Wang, Sa-Sa
    Lu, Can-Zhong
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2020, 8 (50) : 18528 - 18534
  • [29] How to perform corrosion experiments for proton exchange membrane water electrolysis bipolar plates
    Prado, L. H.
    Virtanen, S.
    Weineck, N.
    Ghicov, A.
    Kessler, F.
    JOURNAL OF POWER SOURCES, 2024, 613
  • [30] On the effect of anion exchange ionomer binders in bipolar electrode membrane interface water electrolysis
    Mayerhoefer, Britta
    Ehelebe, Konrad
    Speck, Florian D.
    Bierling, Markus
    Bender, Johannes
    Kerres, Jochen A.
    Mayrhofer, Karl J. J.
    Cherevko, Serhiy
    Peach, Retha
    Thiele, Simon
    JOURNAL OF MATERIALS CHEMISTRY A, 2021, 9 (25) : 14285 - 14295