Non-intrusive load monitoring through coupling sequence matrix reconstruction and cross stage partial network

被引:3
|
作者
Zeng, Wenhao [1 ]
Han, Zhezhe [1 ,2 ]
Xie, Yue [1 ]
Liang, Ruiyu [1 ]
Bao, Yongqiang [1 ]
机构
[1] Nanjing Inst Technol, Sch Informat & Commun Engn, Nanjing 211167, Peoples R China
[2] Nanjing Inst Technol, Sch Informat & Commun Engn, 1 Hongjing, Nanjing 211167, Peoples R China
基金
中国国家自然科学基金;
关键词
Non-intrusive load monitoring; Sequence matrix reconstruction; Matrix dimension rising; Cross stage partial network;
D O I
10.1016/j.measurement.2023.113358
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Non-intrusive load monitoring can obtain the operation state of single device from the total power sequence. To achieve high-precision non-intrusive load monitoring, this study proposes a novel method by coupling sequence matrix reconstruction and cross stage partial network. The timing variation information hidden in the total power sequence is derived through sequence matrix transformation and matrix dimension rising, forming a three-dimensional matrix. Then, this matrix is sent into a cross stage partial network to estimate the device power consumption. Especially, the established cross stage partial network adopts a feature concatenation strategy, greatly reducing the network parameters. Unlike traditional neural network methods, the proposed method makes full utilization of the timing variation information of total power consumption. Experiments are carried out on the load monitoring platform to verify the method feasibility. Results show that the proposed method can non-intrusively decompose the device power consumption, with strong robustness and generalization ability.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Disaggregating Transform Learning for Non-Intrusive Load Monitoring
    Gaur, Megha
    Majumdar, Angshul
    IEEE ACCESS, 2018, 6 : 46256 - 46265
  • [42] A survey of the research on non-intrusive load monitoring and disaggregation
    Cheng X.
    Li L.
    Wu H.
    Ding Y.
    Song Y.
    Sun W.
    Dianwang Jishu/Power System Technology, 2016, 40 (10): : 3108 - 3117
  • [43] On the Non-Intrusive Load Monitoring in dwellings: a feasibility perspective
    Fontana, Claudio
    Sanseverino, Eleonora Riva
    2021 21ST IEEE INTERNATIONAL CONFERENCE ON ENVIRONMENT AND ELECTRICAL ENGINEERING AND 2021 5TH IEEE INDUSTRIAL AND COMMERCIAL POWER SYSTEMS EUROPE (EEEIC/I&CPS EUROPE), 2021,
  • [44] Scattering Transform for Classification in Non-Intrusive Load Monitoring
    de Aguiar, Everton Luiz
    Lazzaretti, Andre Eugenio
    Mulinari, Bruna Machado
    Pipa, Daniel Rodrigues
    ENERGIES, 2021, 14 (20)
  • [45] Non-intrusive appliance load monitoring with bagging classifiers
    Kramer, Oliver
    Klingenberg, Thole
    Sonnenschein, Michael
    Wilken, Olaf
    LOGIC JOURNAL OF THE IGPL, 2015, 23 (03) : 359 - 368
  • [46] Deep Sparse Coding for Non-Intrusive Load Monitoring
    Singh, Shikha
    Majumdar, Angshul
    IEEE TRANSACTIONS ON SMART GRID, 2018, 9 (05) : 4669 - 4678
  • [47] Overview of non-intrusive load monitoring and identification techniques
    Aladesanmi, E. J.
    Folly, K. A.
    IFAC PAPERSONLINE, 2015, 48 (30): : 415 - 420
  • [48] Unsupervised Adaptive Non-Intrusive Load Monitoring System
    Chou, Po-An
    Chang, Ray-I
    2013 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC 2013), 2013, : 3180 - 3185
  • [49] Elimination of Overfitting of Non-intrusive Load Monitoring Model
    Zhou, Yongjun
    Ji, Chao
    Dong, Zhihua
    Yang, Lin
    Zhang, Shu
    2021 IEEE IAS INDUSTRIAL AND COMMERCIAL POWER SYSTEM ASIA (IEEE I&CPS ASIA 2021), 2021, : 1567 - 1571
  • [50] Automatic Appliance Classification for Non-Intrusive Load Monitoring
    Chou, Po-An
    Chuang, Chi-Cheng
    Chang, Ray-I
    2012 IEEE INTERNATIONAL CONFERENCE ON POWER SYSTEM TECHNOLOGY (POWERCON), 2012,