Non-intrusive load monitoring through coupling sequence matrix reconstruction and cross stage partial network

被引:3
|
作者
Zeng, Wenhao [1 ]
Han, Zhezhe [1 ,2 ]
Xie, Yue [1 ]
Liang, Ruiyu [1 ]
Bao, Yongqiang [1 ]
机构
[1] Nanjing Inst Technol, Sch Informat & Commun Engn, Nanjing 211167, Peoples R China
[2] Nanjing Inst Technol, Sch Informat & Commun Engn, 1 Hongjing, Nanjing 211167, Peoples R China
基金
中国国家自然科学基金;
关键词
Non-intrusive load monitoring; Sequence matrix reconstruction; Matrix dimension rising; Cross stage partial network;
D O I
10.1016/j.measurement.2023.113358
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Non-intrusive load monitoring can obtain the operation state of single device from the total power sequence. To achieve high-precision non-intrusive load monitoring, this study proposes a novel method by coupling sequence matrix reconstruction and cross stage partial network. The timing variation information hidden in the total power sequence is derived through sequence matrix transformation and matrix dimension rising, forming a three-dimensional matrix. Then, this matrix is sent into a cross stage partial network to estimate the device power consumption. Especially, the established cross stage partial network adopts a feature concatenation strategy, greatly reducing the network parameters. Unlike traditional neural network methods, the proposed method makes full utilization of the timing variation information of total power consumption. Experiments are carried out on the load monitoring platform to verify the method feasibility. Results show that the proposed method can non-intrusively decompose the device power consumption, with strong robustness and generalization ability.
引用
收藏
页数:9
相关论文
共 50 条
  • [11] Review of Non-intrusive Load Appliance Monitoring
    Dan, Wang
    Li, Huang Xiao
    Ce, Ye Shu
    PROCEEDINGS OF 2018 IEEE 3RD ADVANCED INFORMATION TECHNOLOGY, ELECTRONIC AND AUTOMATION CONTROL CONFERENCE (IAEAC 2018), 2018, : 18 - 23
  • [12] Basic Summary of Non-intrusive Load Monitoring
    Zhang, Lu
    Zhu, Lin
    PROCEEDINGS OF 2019 IEEE 10TH INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING AND SERVICE SCIENCE (ICSESS 2019), 2019, : 372 - 376
  • [13] PATH SIGNATURES FOR NON-INTRUSIVE LOAD MONITORING
    Moore, Paul
    Iliant, Theodor-Mihai
    Ion, Filip-Alexandru
    Wu, Yue
    Lyons, Terry
    2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 3808 - 3812
  • [14] Thresholding methods in non-intrusive load monitoring
    Daniel Precioso
    David Gómez-Ullate
    The Journal of Supercomputing, 2023, 79 : 14039 - 14062
  • [15] An Overview of Non-Intrusive Load Monitoring Methodologies
    Abubakar, Isiyaku
    Khalid, S. N.
    Mustafa, M. W.
    Shareef, Hussain
    Mustapha, Mamunu
    2015 IEEE CONFERENCE ON ENERGY CONVERSION (CENCON), 2015, : 54 - 59
  • [16] Federated Learning for Non-intrusive Load Monitoring
    Meng, Zhaorui
    Xie, Xiaozhu
    Xie, Yanqi
    IAENG International Journal of Applied Mathematics, 2023, 53 (03)
  • [17] SmartM: A Non-intrusive Load Monitoring Platform
    Liu, Xiufeng
    Bolwig, Simon
    Nielsen, Per Sieverts
    BUSINESS INFORMATION SYSTEMS WORKSHOPS, BIS 2019, 2019, 373 : 424 - 434
  • [18] Online non-intrusive load monitoring: A review
    Cruz-Rangel, David
    Ocampo-Martinez, Carlos
    Diaz-Rozo, Javier
    ENERGY NEXUS, 2025, 17
  • [19] Unsupervised Disaggregation for Non-intrusive Load Monitoring
    Pattem, Sundeep
    2012 11TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA 2012), VOL 2, 2012, : 515 - 520
  • [20] Transfer Learning for Non-Intrusive Load Monitoring
    D'Incecco, Michele
    Squartini, Stefano
    Zhong, Mingjun
    IEEE TRANSACTIONS ON SMART GRID, 2020, 11 (02) : 1419 - 1429